CALCULUS 2

AREAS AND VOLUME/

WORK , MULTIPLE INTEGRALS
PRESENTED BY ENGR. JOHN R. REIANO,ECE




=
OBJECTIVES .

* find the area between a curve y = f(x) and an interval on the x-axis.

* find the area between two curves
e Learn solid of revolution, method of washers and disks
* Learn centroid, application of integrals

* Learn double and triple integrals
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Find the volume of the solid generated when the region between the graphs of the equations
L Problem: f(z) =3 ta’andg(z) =z

over the interval [0, 3] is revolved about the x-axis.
Find the area of the region bounded:

* Aboveby:y=ax + 7

2

V=n [ (F(2))?  (9(2))?] da

* Belowby:y ==

e Verticallyby:x = 0andax = 3 3 1 2
y by V:"Tf [(Emz) f]d:c
0

A:/l![(m - 7) — ] de

0

3
A:f(m2}$17)d$

3 1
0 V:‘:Tf (—}m4)dm
, , o \4

2

oz ]
A= |-+ + 7z 1 57 24
{ 3 2 0 :?r{—a:}m] :;rr(§+_3)
0

27 9
= 2= 45 4 21 = 16.
3 +3 9+ 4.5 6.5

987

V = 20 cubic units

16.5 square units




Iterated Integrals

) = [ re
_ jzrydx

=yJ’2xdx

= y(?) + C(y)
= x2y + C(v).

Integrate with respect to x.

Hold y constant.

Factor out constant y.

Antiderivative of 2x 1s 22,

C(y) is a function of y.

-

The “constant™ of integration, C(y), is a function of y. In other words, by integrating
with respect to x, you are able to recover f(x, y) only partially. The total recovery of a
function of x and y from its partial derivatives is a topic you will study in Chapter 15.
For now, you will focus on extending definite integrals to functions of several variables.
For instance, by considering y constant, you can apply the Fundamental Theorem of
Calculus to evaluate

2y - 2y

j 2xyidx = xzy] = (2P — (1)y =4y* — y.
1 i 1
(I

x 1s the variable Replace xby  The result is
of integration the limits of a function
and v is fixed. integration. of .

Similarly, you can integrate with respect to y by holding x fixed. Both procedures are
summarized as follows.

hal) haly)
flx,y) dx = flx, }’}] = f(hy(¥),¥) — f(h(¥),¥)  With respect to x
hy(y) hy(v)
£x) 2,(x)
f;(x, }'} dy = f(I, )’)] = f{I, gz(x)] — f(x, g,(x)] With respect to ¥
£1(x) £1(x)



EXAMPLE 1 Integrating with Respect to y

X
Evaluatej (2xy + 3y?) dy.
1
Solution Considering x to be constant and integrating with respect to y, you have
X
J 2xy + 3y dy = [x_vz + yET Integrate with respect to y.
1 1

=2 - (x+1)
= —x— 1. o

Notice in Example 1 that the integral defines a function of x and can itself be
integrated, as shown in the next example.

SENJA M  The Integral of an Integral

2 x
Evaluate | [j (2xy + 3y2) a‘y] dx.
1 L
Solution Using the result of Example 1, you have

J;l [er (2xy + 39 d_v] dx = f (26 — x — 1) dx

x4 xl 2
= E - E - X ] Integrate with respect to x.
—4—(-1)
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EXAMPLE 4 Finding Area by an lterated Integral

Use an iterated integral to find the area of the region bounded by the graphs of
f(x] = sinx Sine curve forms upper boundary.
and
g(x) = COos X Cosine curve forms lower boundary.
between x = /4 and x = 51/4.

Solution Because f and g are given as functions of x, a vertical representative
rectangle is convenient, and you can choose dy dx as the order of integration, as shown
in Figure 14.5. The outside limits of integration are

T 5

— = =

I=X=
Moreover, because the rectangle is bounded above by f(x) = sinx and below by
g(x) = cos x, you have

Smf4 prsinx

AreaofR=J’ dy dx

mf4 Jeosx

5m/4 sinx
= }-‘] dx Integrate with respect to v.

m/4 COS X

Smi4
= J’ (sin x — cos x) dx
mid

Sm/4
= | —cosx — sinx Integrate with respect to x.
/4

=2.2. |

R: %i_ri

st
4
cosx=y<sinx

\ ",
S/ psing
Area =j J
T4 Jeosx

Figure 14.5

dy d



SV JR Comparing Different Orders of Integration

e > See LarsonCalculus.com for an interactive version of this type of example.

Sketch the region whose area is represented by the integral

2 4
J’ dx dy.
0 Jy?

Then find another iterated integral using the order dy dx to represent the same area and
show that both integrals yield the same value.

Solution From the given limits of integration, you know that
y2 =x=4 Inner limits of integration

which means that the region R is bounded on the left by the parabola x = y* and on the
right by the line x = 4. Furthermore, because

O0=sy=2 Outer limits of integration

you know that R is bounded below by the x-axis, as shown in Figure 14.6(a). The value
of this integral is

2 4 2 14
j j dx dy = x] dy Integrate with respect to x.
0y o 1
2
= | @-y)ay
0
-.'..3 2
= |:4 — —] Integrate with respect to y.
3o
16



12 1 2
11. j j (x + y) dy dx 12. j (x2 — y?) dy dx
0 Jo -1

-2

Problem 11:

1 p2
f f (z +y)dyde
0 Jo
Step 1: Integrate with respect to ¥:

1 yg 2 1 A 1
f [myi —] d:r::/ (Z:r:l —)dmz[(?mi?)dm
0 2 |y 0 2 0

Step 2: Integrate with respect to z:



Problem 12:

1 p2
/ / (z* — y*) dy dx
12

. . . . . . . . .
Note: This is a symmetric region over both axes. 22 is even, 42 is even, so 2 — y? is even in both variables,

but we integrate odd in y part.
Let's solve directly:

Step 1: Integrate with respect to y:
1 372 1
f {mzy y—} dr = f (2:{32
1 3 -9 -1

Step 2: Integrate with respect to x:

1 1 1 1 1
f (4:{:2 —6) dr = 4/ z2dx —6 dx
—1 3 -1 3 -1
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ve INTEGRAL CALCULUS

a

DOUBLE INTEGRALS

Volume = f/_f{:ﬂ,yj dA
R

EXAMPLE -

//ﬁyﬁﬁ — 2y* dA R =11,4] x [0, 3]

R
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Ve INTEGRAL CALCULUS

a

DOUBLE INTEGRALS

In Problems 2—6, evaluate the integral on the left.

2. j.;:. E ayax = {uj A 1]:::: ax = j.;:. (x—x*)dx = [}LT:_ %} B %
3. jlj JU + V)dxdy= jlj [+x* +xy]rdy = Lz 6yidy=[2y']F =14

4. J f'w:__ " xdydx = jj[ij']it-_":cir = FJ[IJ +x2-2x + 2x)dx=%

-1/ 2x"-2 " —

JJI_;II ":mﬂpﬂiﬂﬂdpdﬂ= {[IT [-é—pj Sil]ﬂ]n[:lm&l 46 =

EJI

J; cos’@sin@dO =[-Lcos* O =4

b —



ve INTEGRAL CALCULUS

a

SOLUTIONS

3 pd .
ffﬁyﬁ—ﬂygdﬂzf f byr = — 2y° dx dy
£ o J1

3

3 1 3
:f (43;;1:5 —E:Eyﬁ)‘ ffyzf 28y — 6y° dy
0 1 0

3

3
3
:f 28y — 6y° dy = (lrﬂlyﬂ——y‘i) —
0 k 0

b | o




Ve INTEGRAL CALCULUS

EXAMPLE 2

4 p3
:f / 122 — 18y dy dzx
~1J2

1
:f (lﬁmy—ﬂyg)hgda::f 12z — 45dx
1 —1

4
/ 12z — 45dz = (6% — 45z)|", =[—135
-1



Problem:

Evaluate the double integral ffR(Qm t 3y) dA, where R is the rectangular region given by 0 <
x<land0 <y < 2,

1 g2
/ / (22 + 3y) dy dx
o Jo

/ (2z + 3y) dy = [2;cy | —}
1] 2 1]

3.2° 3-0°
[21:-2{ 5 } [21‘-0} 5 ]—[4.7:{6]

1
/ (4z + 6) dz = [22° 6:1:}[1]

0

2-1°+6-1] ~[2-0°+6-0=[2+6] [0]=8
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ve INTEGRAL CALCULUS

Triple Integrals

[[[ 1@ av

Let's start simple by integrating over the box,
B = [a,b] x [e,d] x [r, s]

Note that when using this notation we list the x's first, the y's second and the z's third.

/f/ﬂm’y’:) dvzﬁsﬁdﬁbf(ﬂi‘:y,:)dmdyd:
B

The triple integral in this case Is,



b

ol

a

INTEGRAL CALCULUS

Example 1 Evaluate the following integral.

/f[ﬂ:ﬂy:dv B =12,3] x[1,2] % [0,1]
2 p3 pl ’
ff/ﬁmy:dV:/ f / S8zryzdzdz dy
1 J2 Jo
B
2 .3 1
= / f 4:Ey:?|nd:£dy
1 J2
2 ,3
:/ f dzydx dy
1 J2
2

:/ Emgyg dy
1

2
1



INTEGRAL CALCULUS

3 pd p0
.Eualuate/ f f Azy — 2’ dzdydz
2 J-1J1
3 pd4 p0 3
fffﬂlﬂ:gy—;’ad:dyda::ff (4
2 J-1J1 2
1
4

=,

Y=

)‘ dy dz

3 pd
:f f — 4zr*ydydz
2



INTEGRAL CALCULUS

3 p4 p0 3 /4 1
f[fﬁlﬂtgy—:gd':dydm:f (—y—i:[r?yj)‘ dr
2 —1 41 2 4 —1
5
:f — —30z%dx
5 4

3 pd4 p0 5
[ f f dz’y — 2 dzdydx = (—:E — 1111*:3)
2 —1 1 4

755




Definition of Improper Integrals with Infinite Integration Limits

1. If f is continuous on the interval [a, o), then

o0 i
I f(x) d.¥=blLlI;CJ’f(x]dx

2. If f is continuous on the interval (—2, b], then

b b
j flx) dx = lil_]'!xJ'f[.I} dx.

. If f is continuous on the interval (— oo, o0), then

I fx}dx—j fx,)dr.,-l—J'f

where ¢ is any real number (see Exercise 107).

In the first two cases, the improper integral converges when the limit exists—
otherwise, the improper integral diverges. In the third case, the improper integral
on the left diverges when either of the improper integrals on the right diverges.
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IMPROPER INTEGRALS

* [mproper integrals with infinite intervals of integration:

™ dx ! ™ dx
—, et dx,
[ S Lo [i5s

* [mproper integrals with infinite discontinuities in the interval of integration:

* dx > dx T
f —> f ; f tanx dx
3 X ] X — | 0

e [mproper integrals with infinite discontinuities and infinite intervals of integration:

f"‘"‘ dx = dx f"“ 4
Y& Byt | secx dx




7.8.1 DEFINITION The improper integral of f over the interval |a, + =) is defined
to be

o
f(x}a’x_ lim f f(x)dx

b— 4=
- +

In the case where the limit exists, the improper integral is said to converge, and the limit
is defined to be the value of the integral. In the case where the limit does not exist, the
improper integral is said to diverge, and it is not assigned a value.

7.8.3 DEFINITION The improper integral of f over the interval (—=, b] is defined
to be

b b
fx)dx = li11_1 [ f(x)dx (2)
The integral is said to converge if the limit exists and diverge if it does not.

The improper integral of f over the interval (—=, 4+) is defined as

+oe C o

fde= | feydx+ | fx)dx 3)

o — C

where ¢ i1s any real number. The improper integral is said to cenverge if both terms
converge and diverge if either term diverges.



EXAMPLE 1 An Improper Integral That Diverges

A
Evaluate j @
1 X

Solution
“dx . [Tdx o
— = lim — Take limit as b — o0,
| X b—o0 I X
b
= |im |:lﬂ I] Apply Log Rule.
b—oo 1
= lim {lﬂ b — l'.]} Apply Fundamental Theorem of Calculus,
b—o0

= OO Evaluate limait.



EXAMPLE 2 Improper Integrals That Converge

Evaluate each improper integral.

a. e *dx
J0O
Fm 1
b. Jo x¥*+ ]-ix
Solution
= b 1 b
o | = gim | evas | = gim | e
b b
= |lim [—e‘*"] = |lim [arcl;an x]
b—oo 0 b—oo 0
= blim (—e P + 1) = blim arctan b
~1 _z

2



» Example 1 Evaluate
T dx = dx
(a) f f —
1 X

Solution (a). Following the definition, we replace the infinite upper limit by ;
upper limit b, and then take the limit of the resulting integral. This yields

= dx , b dx | 11 1
— = lim —=Ilm |—| = Ilm |—-—— ] ==
L X b—te Jy xd bote | 202, b=+ \2 2D7 2

Since the limit is finite, the integral converges and its value is 1/2.

Solution (b).

= dx b dx
f —— — lim —— — lim []rur]I = lim Inb =1
1 X b—+= 1 X b— +x b— +x=

In this case the integral diverges and hence has no value. «



Basic Operations
1. Addition and Subtraction:

- a = oo (for any finite a)
a = o< (for any finite a)

Foo=o0

g 8 8 8

2. Multiplication:

e 00 X a = o (for any positive finite a)

e 00 X (—a)= oo (for any positive finite a)

e OO0 XK X0 =00

¢ o0 X 0 is indeterminate (undefined)

3. Division:
o e
* —- = o (for any positive finite a)
L] =L = o0
—00
. % = 0 (for any finite a)
. % is indeterminate (undefined)

o0 is indeterminate (undefined)

Exponential Functions

1. Exponential Growth:

2. Power Functions:

e a™ = ox (foranya > 1)
e a ¥ =0((foranya > 1)

e (0% and 1™ are indeterminate (unde¢

Logarithmic Functions
1. Logarithms:
e In(c0) = o0

e In(0) = o0

Trigonometric Functions

1. Arctangent:

e arctan(oc) =

[SER |

e arctan(-o0) =

3| =

Limits

1. Limits Involving Infinity:

e lim, ., f(z) = L means f(z) approaches L as x approaches infinity.
o lim, .  f(z) = L means f(z) approaches L as x approaches negative infinity.

* Common indeterminate forms include % %0 X 00,00 — 00,0 00" and 1%,



INTEGRAL CALCULUS

| WORK DONE BY A CONSTANT FORCE APPLIED IN THE DIRECTION OF MOTION
When a stalled car i1s pushed, the speed that the car attains depends on the force F with
which it is pushed and the distance d over which that force is applied (Figure 6.6.1). Force

and distance appear in the following definition of work.

= Figure 6.6.1

6.6.1 bpErFINITION If a constant force of magnitude F is applied in the direction of
motion of an object, and if that object moves a distance d, then we define the work W

performed by the force on the object to be
W=F-.d (1)



INTEGRAL CALCULUS

Common units for measuring force are newtons (N) in the International System of Units
(SI), dynes (dyn) in the centimeter-gram-second (CGS) system, and pounds (1b) in the British
Engineering (BE) system. One newton is the force required to give a mass of 1 kg anacceler-
ation of 1 m/s”, one dyne is the force required to give amass of 1 g anacceleration of 1 cm/ s2,
and one pound of force is the force required to give a mass of 1 slug an acceleration of 1 ft/s-.

It follows from Definition 6.6.1 that work has units of force times distance. The most
common units of work are newton-meters (N-m), dyne-centimeters (dyn-cm), and foot-
pounds (ft-1b). As indicated in Table 6.6.1, one newton-meter is also called a joule (J), and
one dyne-centimeter is also called an erg. One foot-pound is approximately 1.36 J.

Table 6.6.1
SYSTEM FORCE % DISTANCE = WORK
Sl newton (N) meter (m) joule (])
CGS dyne (dyn) centimeter (cm) erg
BE pound (Ib) foot (ft) foot-pound (ft-1b)

CONVERSION FACTORS.

I N = 10" dyn =0.225 Ib 1lb=4.45N
1 ]=10" erg = 0.738 ft-1b 1ftlb=1.36] = 1.36 x 107 erg




b

INTEGRAL CALCULUS

WORK DONE BY A VARIABLE FORCE APPLIED IN THE DIRECTION OF MOTION

6.6.3 DEFINITION Suppose that an object moves in the positive direction along a
coordinate line over the interval [a, /] while subjected to a variable force F(x) that is
applied in the direction of motion. Then we define the work W performed by the force
on the object to be

b
W = f F(x)dx (2)

Hooke’s law [Robert Hooke (1635—-1703), English physicist] states that under appropri-
ate conditions a spring that is stretched x units beyond its natural length pulls back with a

force F(x) = kx

where k is a constant (called the spring constant or spring stiffness). The value of k depends
on such factors as the thickness of the spring and the material used in its composition. Since
k = F(x)/x, the constant k has units of force per unit length.



INTEGRAL CALCULUS

» Example 3 A spring exerts a force of 5 N when stretched 1 m beyond its natural
length.

(a) Find the spring constant k.
(b) How much work is required to stretch the spring 1.8 m beyond its natural length?

Solution (a). From Hooke’s law,
Fix)=kx

From the data, F(x) =535 Nwhenx = 1 m,so 3 = k - 1. Thus, the spring constantis k = 3
newtons per meter (N/m). This means that the force F(x) required to stretch the spring x

meters 1s F{x ) = S5y (3}




INTEGRAL CALCULUS

Solution (b). Place the spring along a coordinate line as shown in Figure 6.6.3. We want

to find the work W required to stretch the spring over the interval from x =0 to x = 1.8.
From (2) and (3) the work W required is

b 1.8 5,27
sz F(_t}d_rzf ﬂxdxz—:l =8.1] «
a 0 2 0
flx)=kx
Matural position

- of spring . . . .
WA AMANWV

4 | > | | -
J:? 0 18 0 v X

(b) Stretched position of spring
A Figure 6.6.3



v INTEGRAL CALCULUS e

EXAMPLE 4 A force of 40 N is required to hold a spring that has been stretched from its natural length
of 10 cm to a length of 15 cm. How much work is done in stretching the spring from 15 cm to 18 cm?

SOLUTION According to Hooke’s Law, the force required to hold the spring stretched
x meters beyond its natural length is f(x) = kx. When the spring is stretched from 10 cm
to 15 ¢cm, the amount stretched is 5 cm = 0.05 m. This means that f(0.05) = 40, so

0.05k = 40 k == = 800

Thus f(x) = 800x and the work done in stretching the spring from 15 cm to 18 cm is

_ i) (.08
W =" 800xdx = 800 %]

0.05
— 0.05

= 400[(0.08)* — (0.05)"] = 1.56] .
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a

EXAMPLE 5. A 200-lb cable is 100 ft long and hangs vertically from the top of a
tall building. How much work is required to lift the cable to the top of the
building?

0+

100+

Xy

FIGURE 2



INTEGRAL CALCULUS

S0LUTION Here we don’t have a formula for the force function, but we can use an argu-
ment similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the x-axis pointing downward as
in Figure 2. We divide the cable into small parts with length Ax. If x is a point in the
ith such interval, then all points in the interval are lifted by approximately the same
amount, namely x;*. The cable weighs 2 pounds per foot, so the weight of the ith part is
2Ax. Thus the work done on the ith part, in foot-pounds. is

(2Ax) xF =2xF Ax
e [ S
force distance

We get the total work done by adding all these approximations and letting the number
of parts become large (so Ax—0):

- 100 If we had placed the origin at the bottom of
T " o D gin at the bottom o
W= ll['[:l E EI" Ax = [ 2x dx the cable and the x-axis upward, we would have
n—=00 L0
gotten
[ () I L
= x2|," = 10,000 ft-1b W= ], 20100 — 2 dx

which gives the same answer.



INTEGRAL CALCULUS

EXAMPLE 5 A tank has the shape of an inverted circular cone with height 10 m and base
radius 4 m. It 1s filled with water to a height of 8 m. Find the work required to empty
the tank by pumping all of the water to the top of the tank. (The density of water 1s
1000 kg/m’.)



INTEGRAL CALCULUS

SOLUTION Let’s measure depths from the top of the tank by introducing a vertical coordi-
nate line as in Figure 3. The water extends from a depth of 2 m to a depth of 10 m and
so we divide the interval [2, 10] into n subintervals with endpoints xg. x,, ..., X, and
choose xI in the ith subinterval. This divides the water into n layers. The ith layer is
approximated by a circular cylinder with radius r; and height Ax. We can compute r;
from similar triangles, using Figure 4, as follows:

r; 4

2
- f=—1ﬂ__':+c
10 —x* 10 i =5 o)

10m

Thus an approximation to the volume of the ith layer of water is

4 FIGURE 3
V, =~ mr? Ax = E—;(m — ) Ax
and so 1ts mass is % —
n; = density X volume \
~ 1000 - 2T (10 — x¥)? Ax = 1607(10 — x¥)* Ax \ n 10
25 I w ] o T i
\\ 10 —x*
\\ . .
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Each particle in the layer must travel a distance of approximately x;". The work W; done to
raise this layer to the top is approximately the product of the force F; and the distance x}*:

W; = F;xi = 1570mx(10 — x)* Ax

To find the total work done in emptying the entire tank, we add the contributions of each
of the n layers and then take the limit as n — o=

fl

W = lim 3 1570mx*(10 — x¥? Ax = [ 1570mx(10 — x)* dx

= =1 v

" 10 ; , o200 x|
= 15?[1qu (100x — 20x~ + x7 ) dx = 15707 | 50x~ — 3 + y

= 1570m(2E) = 3.4 X 10°] O
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Centroids of Plane Areas

THE MASS OF A PHYSICAL BODY is a measure of the quantity of matter in it,
whereas the volume of the body is a measure of the space it occupies.

If the mass per unit volume is the same throughout, the body is said to be
homogeneous or to have constant density.

It is highly desirable in physics and mechanics to consider a given mass as
concentrated at a point, called its center of mass (also, its center of gravity).

For a homogeneous body, this point coincides with its geometric center or centroid.
For example, the center of mass of a homogeneous rubber ball coincides with the
centroid (center) of the ball considered as a geometric solid (a sphere).

The centroid of a rectangular sheet of paper lies midway between the two surfaces
but it may well be considered as located on one of the surfaces at the intersection of
the diagonals. Then the center of mass of a thin sheet coincides with the centroid of
the sheet considered as a plane area.



Center of Mass in a One-Dimensional System

You will now consider two types of moments of a mass—the moment about a point
and the moment about a line. To define these two moments, consider an i1dealized
situation in which a mass m 1s concentrated at a point. If x 1s the distance between this
point mass and another point P, then the moment of m about the point P is

Moment = mx

and x 1s the length of the moment arm.



ar

The concept of moment can be demonstrated simply by a seesaw, as shown in
Figure 7.53. A child of mass 20 kilograms sits 2 meters to the left of fulcrum P, and
an older child of mass 30 kilograms sits 2 meters to the right of P. From experience,
you know that the seesaw will begin to rotate clockwise, moving the larger child down.
This rotation occurs because the moment produced by the child on the left is less than
the moment produced by the child on the right.

Left moment = (20)(2) = 40 kilogram-meters
Right moment = (30)(2) = 60 kilogram-meters

To balance the seesaw, the two moments must be equal. For example, if the larger child
moved to a position % meters from the fulcrum, then the seesaw would balance, because
each child would produce a moment of 40 kilogram-meters.

To generalize this, you can introduce a coordinate line on which the origin
corresponds to the fulcrum, as shown in Figure 7.54. Several point masses are located
on the x-axis. The measure of the tendency of this system to rotate about the origin is
the moment about the origin, and it is defined as the sum of the n products m,x;. The
moment about the origin 1s denoted by M, and can be written as

My,=mx, +mx, +- - -+ mx,.

If M, 1s O, then the system is said to be in equilibrium.

AN W
g NEY 0 \x/

CWASY,

Ifmx, + myx, + -+ -+ myux, = 0, then the system is in equilibrium.
Figure 7.54

The seesaw will balance when the left
and the right moments are equal.
Figure 7.53



For a system that 1s not in equilibrium, the center of mass is defined as the point
X at which the fulcrum could be relocated to attain equilibrium. If the system were
translated X units, then each coordinate x; would become

(x; — X)
and because the moment of the translated system is 0, you have
i fl f
> mx; — %) = > mx;— > mX=0.
=1 =1 =1

Solving for X produces

m.Jx,
ol .
1 _ moment of system about origin

L total mass of system
2 M
=1

T

=

i

When mx, + m,x, + - - - + m,x, = 0, the system is in equilibrium.



Moment and Center of Mass: One-Dimensional System
Let the point masses m,, m,.. . ..m, be located at x,. x,.. . ..Xx

mn"
1. The moment about the origin is
MD — mlxl _|_ .IHEJ:Z + =" + mﬂln.

2. The center of mass 1s

where m = m, + m, + - - - + m,_ 1s the total mass of the system.



The Center of Mass of a Linear System

Find the center of mass of the linear system shown in Figure 7.55.

n my My my
@::::@:::@::Q@::x
-5 -4 -3 -2 -l 0 1 23 5 6 7 8 9
Figure 7.55
Solution The moment about the origin is
M, = mx, + myx, + myxy + myx,
= 10(—=5) + 15(0) + 5(4) + 10(7)
=-=50+0+20+ 70
= 40. Moment about origin
Because the total mass of the system is
m=10+15+5+10=40 Total mass
the center of mass 1s
X = % = ﬂ = 1. Center of mass
m 40

Note that the point masses will be in equilibrium when the fulcrum is located at x =



@ _______ (.'C” ' }‘u]

In a two-dimensional system, there is
a moment about the y-axis M and a
moment about the x-axis M.

Figure 7.56

Center of Mass in a Two-Dimensional System

You can extend the concept of moment to two dimensions by considering a system of
masses located in the xy-plane at the points (x,,y,), (X, ¥,),. . ., (x,.y,), as shown
in Figure 7.56. Rather than defining a single moment (with respect to the origin), two
moments are defined—one with respect to the x-axis and one with respect to the y-axis.

Moments and Center of Mass: Two-Dimensional System

Let the point masses m,, m,, . . ., m_ be located at (x,, v,). (X5, ¥,).. . ..
(x,.v,).
1. The moment about the y-axis is
M, = mx, + myx, +- - -+ mx,
2. The moment about the x-axis is
M. =my +my,+- - -+my,.

3. The center of mass (X. 7) (or center of gravity) is

— M) _ Mx
X=— and y=—
m m
where
m=m, +m,+---+m,

is the total mass of the system.

The moment of a system of masses in the plane can be taken about any horizontal
or vertical line. In general, the moment about a line is the sum of the product of the

masses and the directed distances from the points to the line.

Moment = m,(y, — b) + my(y, —b) + - - -+ m(y, — b)  Horizontal line y = b

Moment = m,(x, — a) + my(x, —a) + - - -+ m(x, —a)  Vertical line x = «



The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses m, = 6, m, = 3, my = 2, and
m, =9, located at

(3,=2), (0,0), (—5,3), and (4,2)
as shown 1n Figure 7.57.
Solution
M=6 +3 +2 +9 =20 Mass
M,=6(3) +3(0)+2(=5) +9(4) =44 Moment about y-axis
M_=6(=2)+30) +23) +092) =12 Moment about x-axis
So,
|
m 20 5
and
_ M. 12 3
Ym0
The center of mass is (?1 %) -

m,=2 \
@ 3+ my,=9
I N O
©.0) [m,=3 “*2
1
-5 -4 -3 -2 —1 1 2 3 4
=1 m, =6
9 @
31 (3,-2)
Figure 7.57
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(b) The centroids of the three rectangles
Figure 7.62

m The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 7.62(a).

Solution By superimposing a coordinate system on the region, as shown in Figure
7.62(b), you can locate the centroids of the three rectangles at

(é%) @é} and (5. 1).

Using these three points, you can find the centroid of the region.
A = areaofregion =3 +3 +4 =10
(1/2(3) + (5/23) + ()@ _29 _

x= 10 0
__6/20)+ 1/20) + )@ _ 10 _,
) 10 10

So, the centroid of the region is (2.9, 1). Notice that (2.9, 1) is not the “average” of

(3.3). 3. 4). and (5. 1). a
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a a

THE (FIRST) MOMENT M; , OF A PLANE AREA with respect to a line L is the product of the area
and the directed distance of its centroid from the line. The moment of a composite area with
respect to a line is the sum of the moments of the individual areas with respect to the line.

The moment of a plane area with respect to a coordinate axis may be found as follows:

1. Sketch the area, showing a representative strip and the approximating rectangle.

2. Form the product of the area of the rectangle and the distance of its centroid from the
axis, and sum for all the rectangles.

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamental
theorem.

For a plane area A having centroid (x, y) and moments M, and M, with respect to the x
and y axes,

Ax=M  and Ay=M

H



INTEGRAL CALCULUS

Example
Determine the centroid of the first-quadrant area bounded by the parabola y = 4 — x°.

Y
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ThAcrmane the centersd of the Restqundrant oren boanded by tne parbols @ =4 - ¢

A M o Ar=M L.
ﬁ: xH — v }’\‘:: Mq
3 - My = A2 N
— My = A Y A
A-f g ':w 3y :J\‘J"\"Q‘) q
I;ti“?‘-i)d" y | '}J)f = T
- ‘1v:-‘-f£]: =ﬁ (4*3‘1)5{?:( :-f;: xY Ax /3
< J (2 (q-5) P> =
A:I?;: lju(qx 1)((4‘1.)")‘ XTE
- :{ Jle-*G&clf-Kq)‘h‘ J\L’i "
b 5 d
s|» = A X-¥ J X
il e gD B LT LT
A s 2% "‘1l a
x - s - L = 12 /s

SE
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The centroid of the approximating rectangle, shown in Fig. 43-3, is (x, 1y). Then its area is

: 2
A=Ly.:fx=f(4—f)dx=%r
i

and MﬁL %y{}'fﬁ):%L (4-x') dr= 12

2 2
MﬁL :ya'x=L xd-x')de=4

Hence, x=M /A=1{,7=M /A=, and the centroid has coordinates (3, %).



b

S,

a

INTEGRAL CALCULUS e

2. Find the centroid of the first-quadrant area bounded by the parabola y = x* and the line y = x.

]

(z, }lz + 2%))
P](:G. 1)

The centroid of the approximating rectangle, shown in Fig. 43-4, is (x, §(x + x*)). Then
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A=Ll(x—,rz)dx=.%,

1
M=L%(x+f)(.x-xl]dx=1‘g M =

X ¥

Hence, x=M /A=14,y=M /A =%, and the coordinates of the centroid are (;, 5).

¥
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Find the centroid of the area under the curve y = 2sin 3x from x =0 to x = #w/3.
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The approximating rectangle, shown in Fig. 43-6, has the centroid (x, 3 y). Then

w3 w3 2 w3 4
A=L yd_r=L 251n3xdr=[—§c053x]ﬂ =3
rrJ]l J‘rf.'} .2 [1 1 ) ]rr.-‘.'*l -
M= 5y(ydr)=2] sin"3xdx=2[5x-5sin6x| =3
wi3 wi3 2 ™ 2
M=j xydr=ZJ xsin3xdx=-[5in3x—3xms}x] ==
roJe 0 9 0 9

ie coordinates of the centroid are (M /A, M /A)=(m/6, w/4).
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Example: e

Determine the centroid of the fourth-quadrant area bounded by curve
=y = x° —4x

Curve: y =x°—-4x
“«y
\ L X°*—4x+4=y+4

| . . (x-2)Y =y+4
sy V(2 d4)

T / y=0;x*-4x=0
V(2,-4)

1 X(x-4)=0
Xx=0 x=4

=
||
"
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dA = —y - dx
A
Az—j'my ax
but y = x* — 4x
Az—f (x* —4x)dx
or
4 - x2 x3 -
Azjﬂ(4X—x )dx=4-?—?L
.»-‘-'1:2('Il53')—1(l53-’-1'):32—E
= ' 3
A0 oe sq. units

3
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M,=A-y

. _.EF—F dx e

SR
buty==
re5

—

n#x=—f:y-g-dx

12 2
=E[5[4—x ly - dx
since y =4 - x*
j B B
Mx=—EJ‘_:|y“-’-dx
1.4, \2
M, =——[ (% —4x] dx
240

M, =1 [*(x* =8 +16x2 )ax
2 li]

=
! i—e-x__m-iT
3ls 4 3 |,
M, =-N 1 (1024)-2(256) - 18 (64) |
2| 5 e
, __1[3072-7680+5120
= 15 ]
Mx=—l E-L—@ cu. units
2|15 | 15

256
M}, = _T_B"q‘]
M, = 255—192]
3

Mj, = % cu. units
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X =2 units
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