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=
OBJECTIVES .

* find the area between a curve y = f(x) and an interval on the x-axis.

* find the area between two curves
e Learn solid of revolution, method of washers and disks
* Learn centroid, application of integrals

* Learn double and triple integrals



SOME PROBLEMS INVOLVING INTEGRAL



B AVERAGE VELOCITY REVISITED

Let s = s(¢) denote the position function of a particle in rectilinear motion. In Section 2.1
we defined the average velocity v,y of the particle over the time interval [#, ;] to be

s(ty) — s(to)
Hh —1Ip

Vave =

Let v(t) = s'(t) denote the velocity function of the particle. We saw in Section 5.7 that
integrating s'(¢) over a time interval gives the displacement of the particle over that interval.

ThUS, h fy
f u(:)d::] S(1)dt = s(t) — s(to)

It follows that

vave = S = St0) ] flu(wdr ()

I — 1o _1‘1—!-‘(:-



» Example 1 Suppose that a particle moves along a coordinate line so that its velocity at
time r 1s v(t) = 2 4+ cos t. Find the average velocity of the particle during the time interval
O<t<m.

Solution. From (1) the average velocity is

]
a—0

& 1 1
f (24 cost)dt = — [2f +sint]; = —(2m) =2 «
0 T T



Il AVERAGE VALUE OF A CONTINUOUS FUNCTION
In scientific work, numerical information is often summarized by an average value or mean
value of the observed data. There are various kinds of averages, but the most common is the
arithmetic mean or arithmetic average. which is formed by adding the data and dividing
by the number of data points. Thus, the arithmetic average @ of n numbers ay, az, ..., a, 1s

n

1 1
a=—(a+a+---+a,) = —Zak
n n
k=1
In the case where the a;’s are values of a function f, say,

a; = f(x1),a2 = f(x2),...,a, = f(xp)

then the arithmetic average a of these function values is

l mn
a=—5 fx)
k=1

We will now show how to extend this concept so that we can compute not only the
arithmetic average of finitely many function values but an average of all values of f(x) as
x varies over a closed interval [a, b]. For this purpose recall the Mean-Value Theorem for
Integrals (5.6.2), which states that if f is continuous on the interval [a, b], then there is at
least one point x* in this interval such that

b
/ fx)dx = f(x") (b —a)

The quantity 1 b
1 =5 [ fwdx
—a ),

will be our candidate for the average value of f over the interval [a, b]. To explain what
motivates this, divide the interval [a, b] into n subintervals of equal length

Ax = (2)

n

and choose arbitrary points x7, x3, ..., x;; in successive subintervals. Then the arithmetic
average of the values f(x7), f(x3),..., f(x))is

1
ave = [f(7) + f(3) + -+ + F()]
or from (2)

] o * * * 1 - *
ave = m[f(xl)Ax + f(x)Ax + -+ f(x))Ax] = b—a g fle)Ax

Taking the limit as n — 40 yields
n—4m ph —

_ I a ] b
lim —agj(xk),&x—mfa f(x)dx

Since this equation describes what happens when we compute the average of “more and
more” values of f(x), we are led to the following definition.



Note that the Mean-Value Theorem for
Integrals, when expressed in form (3),
ensures that there is always at least one
point x* in [a. b] at which the value of
f is equal to the average value of f
over the interval.

REMARK

y=flx)
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N

|
|

a b
A Figure 5.8.1
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5.8.1 DEFINITION If f 1s continuous on [a, b], then the average value (or mean
value) of f on [a, b] 1s defined to be

Jave = —[ f(x)dx (3)

When f is nonnegative on [a, b], the quantity f... has a simple geometric interpretation, which can
be seen by writing (3) as

b
fave (b —a) :f f(f) dx

The left side of this equation is the area of a rectangle with a height of f,.. and base of length » — a, and
the right side is the area under y = f(x) over [a, b]. Thus, f.. is the height of a rectangle constructed
over the interval [a, b], whose area is the same as the area under the graph of f over that interval
(Figure 5.8.1).




» Example 2 Find the average value of the function f(x) = /x over the interval [1, 4],
and find all points in the interval at which the value of f 1s the same as the average.

2x3/2
fmz—f fa)dx = — ff [x l

14
313 3 9

The x-values at which f(x) = /x is the same as this average satisfy /x = 14/9, from
which we obtain x = 196/81 &2 2.4 (Figure 5.8.2). «

Solution.

— 0|
\
\E

A Figure 5.8.2



» Example 3 A glass of lemonade with a temperature of 40°F is left to sit in a room
whose temperature is a constant 70°F. Using a principle of physics called Newton’s Law
of Cooling, one can show that if the temperature of the lemonade reaches 52°F in 1 hour,

then the temperature T of the lemonade as a function of the elapsed time ¢ is modeled by

the equation T — 70 — 30e=05

where T is in degrees Fahrenheit and 7 is in hours. The graph of this equation, shown in
Figure 5.8.3, conforms to our everyday experience that the temperature of the lemonade
gradually approaches the temperature of the room. Find the average temperature Ty, of
the lemonade over the first 5 hours.

Solution. From Definition 5.8.1 the average value of T over the time interval [0, 5] is

1 5
Tove = = f (70 — 30e™%) dt (4)
5Jo
e To evaluate the definite integral, we first find the indefinite integral
o ===
o —0.5¢
= 65 f(?U—BOe ) dt
E 60 B - - .
= ss by making the substitution
E .
g 50 / u =—0.5t sothat du = —0.5dt (ordt = —2du)
2 J
43 Thus,
| | | | | | | | | |
P2 et 89 70 — 307" dt = | (70 — 30€")(—2) du = —2(70u — 30¢") + C
Elapsed time ¢ (h) (70 = 30e Ydi = [ (70 = 30¢")(=2) du = —2(70u — 30¢") +

A FiEure 5.8.3 — —2[?0(—0.53) o 308—0.51‘] 4 C =70t + 606—0,51’ 4+ C

and (4) can be expressed as

—_—

5_

I —0.5
Tove = 3 [70r + 60| = 3

[(350 4 60e™7) — 60]

=58 4 12¢72° a2 59°F «



I AVERAGE VALUE AND AVERAGE VELOCITY
We now have two ways to calculate the average velocity of a particle in rectilinear motion,

since ) | |
s(ty) —s(to) f o(t) dt 5)
fp

h—1y _f1—f0

and both of these expressions are equal to the average velocity. The left side of (5) gives
the average rate of change of s over [fp, 1], while the right side gives the average value of

v = 5" over the interval [#y, t;]. That is, the average velocity of the particle over the time
interval [to, t1] is the same as the average value of the velocity function over that interval.

Since velocity functions are generally continuous, it follows from the marginal note as-
sociated with Definition 5.8.1 that a particle’s average velocity over a time interval matches
the particle’s velocity at some time in the interval.

» Example 4 Show that if a body released from rest (initial velocity zero) is in free fall,
then its average velocity over a time interval [0, 7] during its fall is its velocity at time
t=T/2.

Solution. 1t follows from Formula (16) of Section 5.7 with vo = 0 that the velocity
function of the body is v(t) = —gt. Thus, its average velocity over a time interval [0, T] is

1 T
Vave = ——— v(t) dt
ave 00 ()

T_
1 T
= — rdt
Tﬂ g
T
g

1, T T
= - —1~ :—ga—:‘u — «
T2 |, 2 2



Area of a Region Between Two Curves

With a few modifications, you can extend the application of definite integrals from the g
area of a region under a curve to the area of a region between two curves. Consider two
functions f and g that are continuous on the interval [a, b]. Also, the graphs of both
f and g lie above the x-axis, and the graph of g lies below the graph of f, as shown in /

Region
between
two

Figure 7.1. You can geometrically interpret the area of the region between the graphs as

the area of the region under the graph of g subtracted from the area of the region under|
the graph of f, as shown in Figure 7.2.

x=a x=b
y y y Figure 7.1
8 8 8
: !
|
/ N\, / /
| Y f : f
I I
| |
l : X X X
a b a b a b
Area of region _ Area of region _ Area of region
between fand g under f under g
b b b
f [Fx) — g)]dx = f f(x) dx - f 2(x) dx

Figure 7.2



To verify the reasonableness of the result Representative rectangle

shown in Figure 7.2, you can partition the interval Height: f(x;) — g(x))
y Width: Ax

|a, b] into n subintervals, each of width Ax. Then,

as shown in Figure 7.3, sketch a representative
rectangle of width Ax and height f(x;) — g(x;),

where x; is in the ith subinterval. The area of this
representative rectangle is fx) d

AA; = (height)(width) = [ f(x;) — g(x;)]Ax.

By adding the areas of the n rectangles and taking
the limit as ||A||— 0 (n— ©0), you obtain

Figure 7.3

n—o0

im 3 [£x) — gx)JAx

Because f and g are continuous on [a, b], f — g is also continuous on [a, b] and the
limit exists. So, the area of the region 1s

Area = Tim 3" [(x) — g(x)]Ax

= J [f(x) — g(x)] dx.



Area of a Region Between Two Curves

If f and g are continuous on [a, b] and g(x) = f(x) for all x in [a. b]. then
the area of the region bounded by the graphs of f and g and the vertical lines
x=aand x = b 1s

A= f () — )] d.

EXAMPLE 1 Finding the Area of a Region Between Two Curves

Find the area of the region bounded by the graphs of y = x2 + 2,y = —x, x = 0, and
x = 1.



Solution Let g(x) = —xand f(x) = x> + 2. Then g(x) < f(x) for all xin [0, 1], as
shown in Figure 7.5. So, the area of the representative rectangle is

AA =[f(x) — g(x)]Ax
=[(x2+2) — (—x)]Ax

and the area of the region is

Solution Let g(x) = —xand f(x) = x2 + 2. Then g(x) < f(x) for all xin [0, 1], as
shown in Figure 7.5. So, the area of the representative rectangle is

AA =[f(x) — glx)]Ax
=[(x2+2) — (—x)]Ax

and the area of the region is
A :J [f(x) — g(x)] dx
~ [t - e
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Region bounded by the graph of f, the
graphof g, x =0,and x = 1
Figure 7.5



Area of a Region Between Intersecting Curves

In Example 1, the graphs of f(x) = x* + 2 and g(x) = —xdo not intersect, and the values
of a and b are given explicitly. A more common problem involves the area of a region

bounded by two infersecting graphs, where the values of @ and b must be calculated.

m A Region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the graphs of f(x) = 2 — x% and g(x) = x.



Solution In Figure 7.6, notice that the graphs of f and g have two points of @0 =x]
intersection. To find the x-coordinates of these points, set f(x) and g(x) equal to each (x. f UT)L/' T
other and solve for .

2—x2=x Set f(x) equal to g(x). 1
—x*—x+2=0 Write in general form.
—x+2)x—=1)=0 Factor. I

x=—2orl Solve for x.

Region bounded by the graph of f and
the graph of g

So, a=—2 and b = 1. Because g(x) < f(x) for all x in the interval [—2, 1], the Figure 7.6

representative rectangle has an area of
AA = [f(x) — g)]Ax = [(2 — ) — x]Ax

and the area of the region is
1
A =J [(2 —x?) — x]dx
—2

x3 x2 1
=|-=—-=+
REREREE

SY=



6.1.2 AREA FORMULA If f and g are continuous functions on the interval [a, b],
and if f(x) = g(x) for all x in [a, b], then the area of the region bounded above by
y = f(x), below by y = g(x), on the left by the line x = a, and on the right by the line

x=>bis

b
A=/ [f(x) —g(x)]dx (1)
'
y=f(xn
A X
a b -
y=glx)

» Ficure 6.1.3 (a)




SUMMARY OF FORMULAS:
AREAS

b
A= f LF(x) — 2(x)] dx

d
1= [ [w(y) —v(y)]dy

» Fioure 6.1.3 (a)

c

Figure 6.1.12

w(y)



» Example 1 Find the area of the region bounded above by y = x + 6, bounded below
by ¥ = x?, and bounded on the sides by the lines x = 0 and x = 2

b
A=/‘ £60-9%) dx
{(“)=M° 30‘):x1’ a=0 b=2

>
<

A’f .,2 (x+6) - (x7) dx
f (x+6- -x%dn

—- ~ w - w o -l ==
T

|

A Figure 6.1.4 - ;_ ¢ X - I
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» Example 2 Find the arca of the region that is enclosed between the curves y = x°

and y = x + 6.
xzzx*‘ g:xlt
xzsx-(.:o Xz:3
Y4
(x-3) (x+2]=© . K-z
x=3 x==2 Y=q ~2.4)
A:jh “Q"'—K"c
A ‘(")'5(?)1\‘ Q) s x? 32
3 A Figure 6.1.6
= f_ : (X+€) -(x?) dx
3 s 3
- S - |2 -
2 [, (e xP) b ST 143 - 5
3
- L:+ Lx—?‘—sl L 23.“‘,_4)-(2 S
3 J——
4 ¥ .
¥ L0 o |)2F
Fa 2 G




(X .2 Find the area of the region enclosed by x = y?> and y = x — 2.

X?(jz Y:=x-2 h(g): tj-lz

Ytz=x 9)=4?
X=y+z
Y*= 42 #y=2 [ ifys
91_3.12 ~ x: ;j:: t;.-ﬂt
(Y- (yn)=o XAx~q
5:2 Y=~ ‘ @al ) Qo" )

d 2
A =]¢ w(9) - vg)y :[‘(ﬂn)- g'dy
ISR D
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Find theayven of shadd region

w(4l=Y
vQ): L,

J

AY K=
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Exercises

N

INTEGRAL CALCULUS

Find the area of the shaded region by (a) integrating with
respect to x and (b) integrating with respect to y.

._]
(b) A= [ (V¥ —u/2)dy =
J0



b
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a

Exercises

INTEGRAL CALCULUS

Sketch the region enclosed by the curves and find its area.

1
7. A= f (Vz — ::'E:] dr = 49/192.
1/4




oL INTEGRAL CALCULUS L

Exercises Sketch the region enclosed by the curves and find its area.

9. v=cos2x, v=0, x=n/4, x =m/2

1 - o o

AY

w2 T f 2
l V=cos 2x 9. 4 :f (0 —cos2x) dr = — /  cos2zdr =1/2.
. /4 Jarf4
X
_ —»>
iw\ 2
1k




w? INTEGRAL CALCULUS y?
VOLUMES BY SLICING; DISKS AND WASHERS

Recall that the underlying principle for finding the area of a plane region is to divide the region into thin
strips, approximate the area of each strip by the area of a rectangle, add the approximations to form a
Riemann sum, and take the limit of the Riemann sums to produce an integral for the area. Under
appropriate conditions, the same strategy can be used to find the volume of a solid. The idea is to
divide the solid into thin slabs, approximate the volume of each slab, add the approximations to form a
Riemann sum, and take the limit of the Riemann sums to produce an integral for the volume (Figure

6.2.1).

Sphere cut into Right pyramid cut Right circular cone cut Right circular cone cut
horizontal slabs into horizontal slabs into horizontal slabs into vertical slabs

A Figure 6.2.1



ve INTEGRAL CALCULUS

What makes this method work is the fact that a thin slab
2 Cross _— h tion that does not In a thin slab, th
section as a cross section that does not In a thin slab, the cross
sections do not vary much in size and shape.
(Figure 6.2.2). Moreover, the thinner the slab, the less
variation in its cross sections and the better the
approximation. Thus, once we approximate the volumes of

the slabs, we can set up a Riemann sum whose limit is the
volume of the entire solid

One of the simplest examples of a solid with congruent cross sections is a right circular
cylinder of radius r, since all cross sections taken perpendicular to the central axis are

circular regions of radius r. The volume V' of a right circular cylinder of radius r and height
h can be expressed in terms of the height and the area of a cross section as

In a thin slab, the cross sections
do not vary much in size and shape.

V=nrh= |area of a cross section] x [height] (1)
A Figure 6.2.2
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INTEGRAL CALCULUS

This is a special case of a more general volume formula that applies to solids called right

cylinders.

Aright cylinder is a solid that is generated when a plane region is translated along a line or axis
that is perpendicular to the region (Figure 6.2.3).

Some Right Cylinders

— - -

—-

—
-

Translated square Translated disk Translated annulus Translated triangle

A Fioure 6.2.3



INTEGRAL CALCULUS

If a rnght cylinder 1s generated by translating a region of area A through a distance h,
then h is called the height (or sometimes the width) of the cylinder, and the volume V of
the cylinder 1s defined to be

V. = A - h = [area of a cross section] x [height] (2)

(Figure 6.2.4). Note that this is consistent with Formula ( 1) for the volume of a right circular
cylinder.

Area A
o
E
&
- h .
Volume = A- ki

A Figure 6.2.4




INTEGRAL CALCULUS

6.2.1 proBLEM Let S be a solid that extends along the x-axis and is bounded on the
left and right, respectively, by the planes that are perpendicular to the x-axis at x = a and

x = b (Figure 6.2.5). Find the volume V of the solid, assuming that its cross-sectional
area A(x) 1s known at each x in the interval [a, b].

. S
Cross section

a X b
Cross section area = A(x)

A Figure 6.2.5



INTEGRAL CALCULUS

To solve this problem we begin by dividing the interval [a, &] into n subintervals, thereby
dividing the solid into n slabs as shown in the left part of Figure 6.2.6. If we assume that

the width of the kth subinterval is Axj, then the volume of the kth slab can be approximated
by the volume A(x;)Ax; of a right cylinder of width (height) Ax; and cross-sectional areca

A(x;), where x[ is a point in the kth subinterval (see the right part of Figure 6.2.6).

» Figure 6.2.6




b

Ve INTEGRAL CALCULUS

a

Adding these approximations yields the following Riemann sum that approximates the
volume V':

f
VA Y A Ax
k=1

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

max Ax — (0

] h
V= lim > A@x)Ax = f A(x) dx
k=1 .



& INTEGRAL CALCULUS i

6.2.2 voLUME FORMULA Let S be a solid bounded by two parallel planes perpen-
dicular to the x-axis at x = a and x = b. If, foreach x in [a, b], the cross-sectional area

of 5 perpendicular to the x-axis is A(x), then the volume of the solid is
b
V = f A(x) dx
ia

provided A(x) is integrable.

There is a similar result for cross sections perpendicular to the y-axis.

6.2.3 voLUME FORMULA Let S be a solid bounded by two parallel planes perpen-
dicular to the y-axisat v = cand y = d. If, foreach v in [c¢, d], the cross-sectional area

of 5 perpendicular to the y-axis is A(y), then the volume of the solid is
d
V=f A(y)dy (4)
i

provided A(y) is integrable.

(3)

In words, these formulas state:
The volume of a solid can be
obtained by integrating the
cross-sectional area from one
end of the solid to the other.



INTEGRAL CALCULUS

» Example 1 Derive the formula for the volume of a right pyramid whose altitude is A
and whose base i1s a square with sides of length a.




INTEGRAL CALCULUS

Solution.  As illustrated in Figure 6.2.7a, we introduce a rectangular coordinate system
in which the y-axis passes through the apex and is perpendicular to the base, and the x-axis
passes through the base and is parallel to a side of the base.

y-axis
B(0, h)I




INTEGRAL CALCULUS i

At any y in the interval [0, h] on the y-axis, the cross section perpendicular to the y-

K I axis 1s a square. If s denotes the length of a side of this square, then by similar triangles
hY Fi 6.2.7b
' (Figure ) %s hey .
h—yl N — = or s=—(h—y)
'-_'_. Eﬂf h h
lﬁk h Thus, the area A(v) of the cross section at y is
ES p 5 a- A
¥ N Ay) =s"= }—Iih =)
\ 1
LY
0 za C
and by (4) the volume is
{bll h h g2 a2 [k
- . V= f A(y) dy =[ —=(h—y’dy=15 | (h—y)dy
A Figure 6.2.7 0 o h* Jo

h 2
a 1 a 1 1
a0 ] = [orar] -5

That is, the volume is % of the area of the base times the altitude. -



B SOLIDS OF REVOLUTION
A solid of revolution is a solid that is generated by revolving a plane region about a line that
lies in the same plane as the region; the line is called the axis of revolution. Many familiar
solids are of this type (Figure 6.2.8).

Some Familiar Solids of Revolution

n LD,

A
Axis of revolution  \} V)

A A
v U

Hollowed right
Right circular cylinder Solid sphere Solid cone circular cylinder

» Figure 6.2.8 (a) (b) (0 (d)



REVOLVE ABOUT X-AXIS







INTEGRAL CALCULUS

6.2.4 prosLEM Let f be continuous and nonnegative on [a, b], and let R be the
region that is bounded above by vy = f(x), below by the x-axis, and on the sides by the

lines x = a and x = b (Figure 6.2.9a). Find the volume of the solid of revolution that
is generated by revolving the region R about the x-axis.

Y=

|
r

{H

» Figure 6.2.9 (a) ()



INTEGRAL CALCULUS

We can solve this problem by slicing. For this purpose, observe that the cross section

of the solid taken perpendicular to the x-axis at the point x is a circular disk of radius f(x)
(Figure 6.2.9b). The area of this region is

A(x) = [ f(x)]?

— r\i Thus, from (3) the volume of the solid is

|

|

/
/

b
0 V = f 7l f(x)]* dx (5)

Because the cross sections are disk shaped, the application of this formula is called the
method of disks.



SUMMARY OF FORMULAS: VOLUME
VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE X-AXIS

AY

\
| R bC; _ ;’—}—:
|

b b , ,
V =[ [ f(x)]* dx 4 =[ ([fO)]” — [g(O)]7) dx
da

Volume formula by method of Disks Volume formula by Method of washers



F‘V““'j Vo lume by mebhed of disk f'Vfquicu‘-v o x-axis

» Example ‘ Find the volume of the solid that is obtained when the region under the ﬁ MU‘ﬁ o
curve ¥y = /x over the interval [1, 4] is revolved about the x-axis (Figure 6.2.10).

v v:.. o (I [fQ()] x

A Figure 6.2.10

V= a@midx | =10 5-1‘4
LI(K) X =

= ﬁr:'x > :[Tl 3;]’ (‘."‘;j
S



. : : fa Jun/09/2024 U6:31 PM
» Example 2 Find the volume of the solid generated when the region between the graphs

of the equations f(x) = = + x? and g(x) = x over the interval [0, 2] is revolved about the

X-axis.

fOA= 347 ge=x =T

V= [Fef (507
- “I-‘L(li“(t]i -0 Jdx

b=¢<

- g L & LN




SUMMARY OF FORMULAS: VOLUME
VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE y-AXIS

y AY
d L +

x=w(y)

Y=

(a) (b) (a) (b

Disks Washers

d d
1% =f mlu(y)* dy 1% =/ (w3 * — [v() 1P dy

Disks Washers



» Example 5 Find the volume of the solid generated when the region enclosed by

vy = Jx, vy =2, and x = 0 is revolved about the y-axis.

X

tj:ﬁ o Y=2 Y=

‘52‘;)‘ f O
Xyt R
uy)=y* c=0 d=2

d
Vv =/ mlu(y))? dy

Disks

Jun/09/2024 |



Determine the volume of the solid generated by the bounded
region of given equation rotated about the y-axis.

y=-x'+4,x=1,y=0

V:.Wjoj(q“o'l)llg =ﬂ({a3-&

SRRSO BRD




INTEGRAL CALCULUS

OTHER AXES OF REVOLUTION

It 1s possible to use the method of disks and the method of washers to find the volume of a
solid of revolution whose axis of revolution is a line other than one of the coordinate axes.
Instead of developing a new formula for each situation, we will appeal to Formulas (3) and
(4) and integrate an appropriate cross-sectional area to find the volume.

» Example 6 Find the volume of the solid generated when the region under the curve
vy = x* over the interval [0, 2] 15 rotated about the line v = —1.




INTEGRAL CALCULUS

Find the volume of the solid that results when the shaded
region 1s revolved about the indicated axis.

b
l y V = f 7l f(x)]* dx

3
1. V:?rf (3 — 2) dox = 8.
—1
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d 2
vV =/ wlu(y)]=dy

Disks

el
=
ol

a':

1
3. V = ﬁ] 73 —y)?dy = 137 /6.
0
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z) AV
1. y <5
2
X [ X~
= : IJC' | 1 > ':!'(3-.1)
2
Vv =[h3[,f{.ﬂljd.‘r: {(kjp‘f?'}f \ 5
V—F::[ut_rnl:d,r V:f lr("!' [3".1 ’
V=1 (%) dx o (30704
- 7 1
_ (3 = | .
h “L B-x)dx -/l’.; 53 (3-9) 4y
=2 (B
[ cTle- D0 Tl eyt
_lu: g IT(G] 3'._:11 3 :)
— - = '+ Ld
< J E/u
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5. V = ?rf coszdr = (1 — v2/2)r.
TT_.'"-'-i

L

m _.Ill 2




VOLUMES BY CYLINDRICAL SHELLS

A cylindrical shell is a solid enclosed by two concentric right circular cylinders (Fig-
ure 6.3.2). The volume V of a cylindrical shell with inner radius ry, outer radius r;, and
height h can be written as

V = [area of cross section] - [height]
= (r] = mri)h
=1(ry+n)(ry=r)h
=[50 +1)] h-(n-n)

But %(rl + 1) s the average radius of the shell and ry — ry is its thickness, so

V = 2r - [average radius] - [height] - [thickness] (1)



THE SHELL METHOD

To find the volume of a solid of revolution with the shell method, use one of
the formulas below. (See Figure 7.29.)

Horizontal Axis of Revolution Vertical Axis of Revolution

d b
Volume = V = Qﬂf p(v)h(y) dy Volume = V = Eﬂf px)h(x) dx
h(y)
i— —
Ay - s hix)
\ ' F[‘I-]

i | o

il : b

I p?fl‘]

Horizontal axis of revolution

Vertical axis of revolution
Figure 7.29



Using the Shell Method to Find Volume

Find the volume of the solid formed by revolving the region bounded by
y=x—x°

and the x-axis (0 = x < 1) about the y-axis.

Solution Because the axis of revolution is y

vertical, use a vertical representative rectangle,

as shown in Figure 7.30. The width Ax indicates

that x is the variable of integration. The distance
from the center of the rectangle to the axis of
hix)=x—-2x3 J'

revolution is p(x) = x, and the height of the
rectangle is

X
#

h{x] = xr — x\. pu';z.l' (1,0
Axis of
revolution

Figure 7.30

Because x ranges from 0 to 1, apply the shell
method to find the volume of the solid.

b
V= ZHJ p(x)h(x) dx
I
= 2J'TJ' x(x — x%) dx
0

1
= zﬂj (—x* + IZ) dx Simplify.
0

|: xﬁ I.’r]l
=2n| —— + — Integrate.
5 31
11
= —+ =
211'( 5 3)



m Using the Shell Method to Find Volume

Find the volume of the solid formed by revolving the region bounded by the graph of
x=eY
and the y-axis (0 < y < 1) about the x-axis.

Solution Because the axis of revolution is horizontal, use a horizontal representative
rectangle, as shown in Figure 7.31. The width Ay indicates that y is the variable of
integration. The distance from the center of the rectangle to the axis of revolution is
p(¥) = y, and the height of the rectangle is h(y) = e~Y". Because y ranges from 0 to 1,
the volume of the solid is

d
V= ZHJ’ p(v)h(y) dy Apply shell method.
c'l 1
= ZHJ’ ve ¥ dy
0
5 |
= —]IT|:E_:" ] [ntegrate.
0
.
-
e
= 1.986. ad

ply)=y

h(y) = e

Figure 7.31

Axis of
revolution
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In summary, we have the following result.

6.3.2 VOLUME BY CYLINDRICAL SHELLS ABOUT THE y-AXIS Let f be continuous
and nonnegative on [a, b] (0 = a < b), and let R be the region that is bounded above by
v = fi(x), below by the x-axis, and on the sides by the lines x = @ and x = b. Then the
volume V of the solid of revolution that is generated by revolving the region R about
the y-axis is given by

b
V =f 2axf(x)dx (2)
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» Example 1 Use cylindrical shells to find the volume of the solid generated when
the region enclosed between y = /x, x = 1, x = 4, and the x-axis is revolved about the
V-axis.

A Y mem—

Ll y=+x ' - /

\

Cutaway view of the =solid

(B)

Y¥=

]- 'i & Figure 6.3.6

Solution. First sketch the region (Figure 6.3.6a); then imagine revolving it about the
y-axis (Figure 6.3.6b). Since f(x) = \/x,a = 1, and b = 4, Formula (2) yields

4 4 4
- 2 4 124
v =f 2 /% dx = an 2 dx = {2;'1’ : 515”} - ?”[32 1] = T:'T <
1 1 1




i SURFACE AREA

INTEGRAL CALCULUS

A surface of revolution is a surface that is generated by revolving a plane curve about an
axis that lies in the same plane as the curve. For example, the surface of a sphere can be
generated by revolving a semicircle about its diameter, and the lateral surface of a right

circular cylinder can be generated by revolving a line segment about an axis that is parallel
to it (Figure 6.5.1).

N

Some Surfaces of Revolution

o

oy
<

»
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6.5.2 peFINITION If f is a smooth, nonnegative function on [a, b], then the surface
area S of the surface of revolution that is generated by revolving the portion of the curve

v = f(x) between x = a and x = b about the x-axis i1s defined as

b
S = f 272 f)y1 + [f'(x) P dx
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This result provides both a definition and a formula for computing surface areas. Where
convenient, this formula can also be expressed as

S = f 2 F(x)V 1 + [F(x)]F dx = f zm\/ ) dx (4)

Moreover, if g 1s nonnegative and x = g(v) 1s a smooth curve on the interval [c, d], then the
area of the surface that is generated by revolving the portion of a curve x = g(y) between
v = ¢ and y = d about the y-axis can be expressed as

d d dx 2
S = f 2me(v)V1+ [g' ()P dy = f 2mx '+(E) dy (5)




INTEGRAL CALCULUS

» Example 1 Find the area of the surface that is generated by revolving the portion of
the curve ¥y = x° between x = 0 and x = 1 about the x-axis.

T 2 " . - v " . . ‘k _"’
Solution. First sketch the curve; then imagine revolving it about the x-axis (Figure 6.5.6).
3

Since y = x°, we have dy/dx = 3x2, and hence from (4) the surface area S is

1 2
d‘
x S:f Z:rr}=,|,l'l—|—(—}) dx
0 dx

I
= f 2mx 1+ (3x2)2 dx

0

Y=

l
= Eﬂrf (1 +9xH 2 dx
0

10
:E u'? du u=1+9x!
316 I du = 363 dx
10
_ i_g . %uﬁfz] - %ucﬁf’2 1)~ 3.56 A Figure 6.5.6
| u=1
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» Example 2 Find the area of the surface that is generated by revolving the portion of
the curve y = x? between x = 1 and x = 2 about the y-axis.

N
.ﬁi

Solution. Firstsketch the curve; then imagine revolving it about the y-axis (Figure 6.5.7).
Because the curve is revolved about the y-axis we will apply Formula (5). Toward this end,
we rewrite y = xtasx = /¥ and observe that the y-values corresponding to x = 1 and

x=2arey=1andy=4. Since x = ,/y, we have dx/dy = IJ(EV-"}_!), and hence from _
(5) the surface area § is =

4
S = f 2*r3,,||']+ fh
|

= 2*1’\/'_‘/1+

d_v
. .
= Jrf 4v 4+ 1dy | | | | o
I |1 2
- 17 _ s l A Figure 6.5.7
_ 1/2 =4y +
4 j; u"du duy =4dy

2,17 T an
228 2 Zarr o5 23085 <
13" ]sz 6 .



SUMMARY OF FORMULAS:
AREAS

b
A= f LF(x) — 2(x)] dx

d
1= [ [w(y) —v(y)]dy

» Fioure 6.1.3 (a)

c

Figure 6.1.12

w(y)



SUMMARY OF FORMULAS: VOLUME
VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE X-AXIS

AY

\
| R bC; _ ;’—}—:
|

b b , ,
V =[ [ f(x)]* dx 4 =[ ([fO)]” — [g(O)]7) dx
da

Volume formula by method of Disks Volume formula by Method of washers



SUMMARY OF FORMULAS: VOLUME
VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE y-AXIS

y AY
d L +

x=w(y)

Y=

(a) (b) (a) (b

Disks Washers

d d
1% =f mlu(y)* dy 1% =/ (w3 * — [v() 1P dy

Disks Washers



SUMMARY OF FORMULAS: VOLUME

THE SHELL METHOD

To find the volume of a solid of revolution with the shell method, use one of
the formulas below. (See Figure 7.29.)

Horizontal Axis of Revolution Vertical Axis of Revolution
~d b
Volume = V = 2n J p(v)h(y) dy Volume = V = 2n f p (x)h(x) dx
(4 a
h(y) :
(1 : \A_\' -------- .
:
|
l
Ay - > h(x)
\*P‘ y)
(‘ 1
a | b
| |
p(x)
Horizontal axis of revolution Vertical axis of revolution

Figure 7.29
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