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TRIGONOMETRIC TRANSFORMATION
WALLI’'S FORMULA

Walll sFormula

? ™ 9 oos" __(m-1)m-3).... n—1)n-3)
IO Gcos™0 do (M+n)m+n-2)m+n-4)....

X0

/A
a =— whenmand n areeven
where < 2

_ otherwise o =1
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a

exampLe  Evaluate the following integrals.

1. _[%3c058xsin2xdx 3 (L7)X5X3)L) i 2£:0.12885

(10)8)6)a)2) "2 ~ 512

S arad yaindwdy g (2N6)4N2) . 1
2. jo 8Cc0os’ X sIn de_8(10)(8)(6)(4)(2).1_§_0'2

3. IZ cos® 3x = i, (7)(5)(3)(1) 73T _ 0.143

3 (8)(6)(4)(2) 2 768

letu = 3x; du = 3dx
when x=0; u=0

T T
when X=—:U=—="—
6 6 2
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exampLe  Evaluate the following integrals.

6)4)2) .1 _ 090

4. Fsin7 2X = 1 o
0 2

(7X5X3)1)

letu = 2x; du = 2dx

when x=0; u=0

2T T

T
when X=—; U=
4 4

2
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exampLe  Evaluate the following integrals.

6)4)2) .1 _ 090

4. Fsin7 2X = 1 o
0 2

(7X5X3)1)

letu = 2x; du = 2dx

when x=0; u=0

2T T

T
when X=—; U=
4 4

2



CALCULUS 2
LESSON 10

INTEGRATION TECHNIQUES
Integration by Trigonometric Substitution

Integration by Partial Fraction expansion




- - OBJECTIVES

* to evaluate integrals using integration by substitution

=P L

* to evaluate integrals using integration by give a general method for
integrating rational functions that is based on the idea of
decomposing a rational function into a sum of simple rational
functions
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‘ TRIGONOMETRIC SUBSTITUTIONS

THE METHOD OF TRIGONOMETRIC SUBSTITUTION
To start, we will be concerned with integrals that contain expressions of the form

2 |
uz—xz, -1,!12+:12* xXT —a-

in which a 1s a positive constant. The basic idea for evaluating such integrals is to make a
substitution for x that will eliminate the radical. For example, to eliminate the radical in

the expression +/ at — Izﬁ we can make the substitution
x=asinf, —m/2<6 <mu/2 (1)
which yields

vat —x? = \,/EI —a’sin’ 6 = Jﬂz{l — sinzﬂ}

.
= avcos f =alcosf| =acosf cosf = Osince —1/2 <8 < a/2
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The restriction on # in (1) serves two purposes—it enables us to replace |cos#| by cos#

to simplify the calculations, and it also ensures that the substitutions can be rewritten as
9 = sin"'(x/a), if needed.
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dx

v 7
Va4 —x-

N
.ﬁi

» Example 1 Eva]uata:f
¥
I—

Solution. To eliminate the radical we make the substitution

x=2smf, dx =2cos8df

This yields f dx f 2cos 8 db
x24/4 — x2 (2s5in@)2v/4 — 4sin? 6
2 cosd da 1 dd

- f (2sin@)2(2cosd) - 4[ sin® @

1 . ]
=—fc3c‘9d9=——cnt9—|—{:'
4 4
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At this point we have completed the integration; however, because the original integral was
expressed in terms of x, it is desirable to express cot# in terms of x as well. This can be
done using trigonometric 1dentities, but the expression can also be obtained by writing the
substitution x = 2sin# as sin# = x/2 and representing it geometrically as in Figure 7.4.1.

From that figure we obtain )
—_— I_
cotd = v
X
2
: X
o Substituting this in (2) vields
i

A Figure 7.4.1

x=2sin#@ f d_'-f ] qu' — .TE

x2y/4 — x? 4 x



m Trigonometric Substitution: u = asin @

Find JL
N

Solution First, note that the basic integration rules do not apply. To use trigonometric

substitution, you should observe that

N

is of the form Jm. So, you can use the substitution
x=asin® = 3 sind.

Using differentiation and the triangle shown in Figure 8.6, you obtain
dx =3cos8df, J9—x=3cosf, and x2= 9sin?f.

So, trigonometric substitution yields

J‘ dx = J‘ 3 cos 6 6 Substitute
20— &2 (9 sin® 8)(3 cos 6) T
= l d6 Simplify
9] sin? 8 B
1 - . . .
= E csc 0 df Trigonometric identity
1 .
= —ECDLE + C Apply Cosecant Rule.
= _I_(—‘;' — ) +C Substitute for cot 8.
9 x
Ox '

Note that the triangle in Figure %.6 can be used to convert the 8's back to s, as shown.

cot @ = adj.
opp.
-\,-'g - x*

sin @ = %,, cot @ =
Figure 8.6

0 — x°

X



m Trigonometric Substitution: u = atan 8

Find -[L
JAZF 1

Solution Letu = 2x,a = 1, and 2x = tan 8, as shown in Figure 8.7. Then

:ir=;—5ecgﬂdﬂ and 432 + 1 = sec .

Trigonometric substitution produces
dx 1 j sec” 6 df

JAZ+1 2] sech
=I§J‘5&cﬂdﬂ

=Iiln|secﬂ+tanﬁl|+ﬂ

='§1n|,,f4P +1+ 2] +C.

Substitute.

Simplify.

Apply Secant Rule.

Back-substitute.

tan @ = 2x, sec 8 = qd? + 1
Figure 8.7
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x-—25 _
Evaluate f dx, assuming that x > 5.
X
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#
Va— o
x=Zsinf
I -
I TRIGONOMETRIC FUNCTIONS FOR RIGHT TRIANGLES
The sine, cosine, tangent, cosecant, secant, and cotangent of a positive acute angle # can
be defined as ratios of the sides of a right trnangle. Using the notation from Figure B.6,
these definitions take the following form:
¥
) side opposite 8 ¥ hypotenuse r
sinf = = =, cscl = — . = —
hypotenuse r side opposite 8 ¥
side adjacentto #  x hypotenuse r
cosf = = —, sect = — - = — (6)
A Figure B.6 hypotenuse r side adjacentto 8  x
side opposite ¢ ¥y side adjacentto #  x
tanf = = cotd = = —

side adjacent to & T X side opposite ¢ y
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TABLE 1.4 Values of sin 6. cos #, and tan 6 for selected values of 6
Degrees —180 =135 =90 —-45 0 30 45 60 90 120 135 150 180 270 360
. -3 —T —Aar T v T T 277 37 S 37

O(radians) =7 —— 5 3 " ¢ ¥ 3 2 3 4 & T 7
. 0 = V2 - V2 o L V2 V3 1 V3 V2o 0 1 o
S 2 2 2 2 2 2 2 2

| V2 \V2 V3 V2o 1 —-V2 -\V3
cos B —1 5 0 5 | 5 3 B 0 —5 3 5 —1 0 |

/ey — A/t

tan 6 0 1 —1 0 \E; 1 V3 -3 -1 ;\!3 0 0




INTEGRAL CALCULUS

dx

I *—1’

» Example 2 Evaluate

Solution. There are two possible approaches: we can make the substitution in the indef-
inite integral (as in Example 1) and then evaluate the definite integral using the x-limits of
integration, or we can make the substitution in the definite integral and convert the x-limits
to the corresponding &-limits.

Method 1.

Using the result from Example 1 with the x-limits of integration yields

fﬂ ax [ /a=a ﬂ__l[l_ﬁ]_@—n
! B ] - 4 B

x2y/4 — x? 4 X 4
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Method 2.

The substitution x = 2sin# can be expressed as x/2 =sinf or @ = sin_'{.ﬂﬁl, s0 the
@-limits that correspond to x = 1 and x = /2 are

x=1: 9=3in_|(1f2}=rrfﬁ
x=4+2: 8 =sin""(v2/2) = n/4

Thus, from (2) in Example 1 we obtain

V2
f f EEE a8 de Convert x-limits to #-limits.
I x2y 4 —x°

= —— [r:c-t.%"']wI ﬁll [] — vﬁ] = ﬂd_ : =]
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Table 7.4.1
TRIGONOMETRIC SUBSTITUTIONS

EXPRESSION IN

THE INTEGRAND SUBSTITUTION RESTRICTION ON 6 SIMPLIFICATION
v al — x? x=asin# —nl2 <@ <nl? at—xt=a‘—a‘sin?f = a°cost P
Vad + xt x=atanf 2 <O <nl2 at+x=a%+atan? @ = asect P
D=<h<m/2 (Ifx=z=a)
¥ — a° X=asec# xz—azzazﬂeczﬂ—.a'z:aztanzﬁ
v nf2<=0<nm (ifx<-a

X =acos ©



Trigonometric Substitution (a > 0)
1. For integrals involving ./a®> — u?, let

u = asin 8.

Then /a®> — u? = a cos 8., where

—n/2 =68 = n/2.

2. For integrals involving ./a* + u?, let

u = atan 8.

Then ./a* + u®> = a sec 8, where

—n/2 <8 < m/2.

3. For integrals involving /u* — a?, let
u = asecé.

Then

atan 6 foru > a, where0 = 8 < /2

x.-'flfz —a*= {
—atan B foru < —a,where m/2 < 8 = m.
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TABLE 1.4 Values of sin #, cos #, and tan # for selected values of

Degrees —180 —-135 —-90 —-45 0 30 45 60 90 120 135 150 180 270 360
adianc)  — —3r —m -7 @ w @ 2m  3m sw 3
# (radians) s 3 > 3 0 @ 3 > - 1 5 T 5 o
/1 1/ > 2 3 5
sin 0 0 V2o V2 o e 2 N3 RER s 0 -1 0
2 2 | 2/ 2 2 2 2
/" . 3 3 A/ A3
cos B =1 \’: - 0 \':u‘_ I \ﬂj \*1‘_ % 0 _% 1’\: - ‘: =1 0 I
3 - —_ -3
tan @ 0 1 —1 0 \'., 1 V3 -3 —1 V: 0 0

\
—

%,

rl
(7,
| —
AR o
v
— (=
AN
¢ v
—— -
Al
" )
|
S
’.1—|

s

+ERESBD
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/x* — 25

v ;
» Example 5 Eva]uata[ dx, assuming that x = 5.
X

Solution. The integrand involves a radical of the form +/x? — a? with @ = 5, so from
Table 7.4.1 we make the substitution

x=25sect, 0=0<xa/2

d .

é — SsecHtan® or dx = S5secHtanf df

Thus,
f Jx2 =25 V25sec?@® — 25
A — -
X

S5secd

(SsecftanfP) do

Sltan |
=f (Ssecftanf) do
SsecH

.
=5ftan‘9du9 tanf = O since 0 < 8 = 7/2

=5f{sm2€— 1)df = 5tanf — 50 + C
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J
To express the solution in terms of x, we will represent the substitution x = 5sect geo-

metrically by the triangle in Figure 7.4.5, from which we obtain
X — 295
\xt - 25 tanf = !
| d From this and the fact that the substitution can be expressed as ff = sec™ | (x/5), we obtain

5 |
Vi =125 .
x="5sech ‘[ ! ¢I=QIE—ZE—SE54(§)+C 4
X

A Figure 7.4.5
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PARTIAL FRACTIONS

In algebra, one learns to combine two or more fractions into a single fraction by
finding a common denominator. For example

2 N 3 2x+ 1)+ 3(x — 4) S5x — 10 1
r—4 x4+1 (x—-Dx+1 x2—3x—4

However, for purposes of integration, the left side of (1) is preferable to the right side since
each of the terms is easy to integrate:

f Sx — 10 i f 2 I f 3 Ix — 21n| 4431 e
.'1.'2—3_'1.'—4{-1_ _1-_4{'1 _1.+1{‘1‘_ nijx 211 | X _
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Thus, it 1s desirable to have some method that will enable us to obtain the left side of (1),
starting with the right side. To illustrate how this can be done, we begin by noting that
on the left side the numerators are constants and the denominators are the factors of the
denominator on the right side. Thus, to find the left side of (1), starting from the right side,
we could factor the denominator of the right side and look for constants A and B such that
Sx — 10 A N B

x—Hx+1) x—4 x+1

One way to find the constants A and B is to multiply (2) through by (x — 4)(x + 1) to clear

fractions. This yields 5x —10 = A(x + 1) + B(x — 4) (3)

(2)



INTEGRAL CALCULUS

This relationship holds for all x, so it holds in particular if x = 4 or x = —1. Substituting

x = 4 1n(3) makes the second term on the right drop out and yields the equation 10 = 5A
or A = 2; and substituting x = —1 m (3) makes the first term on the right drop out and

yields the equation —15 = —5B or B = 3. Substituting these values in (2) we obtain

Sx—10 2 .\ 3
x—Hx+1) x—-4 x+1

(4)

which agrees with (1).
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A second method for finding the constants A and B is to multiply out the right side of
(3) and collect like powers of x to obtain

5x — 10 = (A + B)x + (A — 4B)

Since the polynomials on the two sides are 1dentical, their corresponding coefficients must
be the same. Equating the corresponding coefficients on the two sides yields the following
system of equations in the unknowns A and B:

A+ B= 5
A—4B =-10

Solving this system yields A = 2 and B = 3 as before (venfy).
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The terms on the right side of (4) are called partial fractions of the expression on the left

side because they each constitute part of that expression. To find those partial fractions we
first had to make a guess about their form, and then we had to find the unknown constants.

Our next objective is to extend this idea to general rational functions. For this purpose,
suppose that P(x)/ Q(x) is a proper rational function, by which we mean that the degree
of the numerator is less than the degree of the denominator. There is a theorem in advanced
algebra which states that every proper rational function can be expressed as a sum

Px)
Q(x)
where Fj(x), F2(x). ..., F,(x) are rational functions of the form
A Ax+ B
: o 3 k
(ax + b) (ax= + bx + ¢)

in which the denominators are factors of Q(x). The sum is called the partial fraction
decomposition of P(x)/Q(x), and the terms are called partial fractions. Asin our opening
example, there are two parts to finding a partial fraction decomposition: determining the
exact form of the decomposition and finding the unknown constants.

= Fi(x) + Fa(x) +-- -+ Fulx)




Decomposition of N(x)/D(x) into Partial Fractions

1.

fad

Divide when improper: When N(x)/D(x) is an improper fraction (that is,
when the degree of the numerator is greater than or equal to the degree of the
denominator), divide the denominator into the numerator to obtain

. Ny(x)
gg; = (a polynomial) + D: (;

where the degree of N,(x) is less than the degree of D(x). Then apply
Steps 2. 3, and 4 to the proper rational expression N,(x)/D(x).

Factor denominator: Completely factor the denominator into factors of
the form

(px + gy and (ax* + bx + ¢)"

where ax? + bx + ¢ is irreducible.

Linear factors: For each factor of the form (px + g)™, the partial fraction
decomposition must include the following sum of m fractions.

AI A'-" Am
+ — 4+ ——
(px+q) (px+gq)° (px + g)"

Quadratic factors: For each factor of the form (ax* + bx + ¢)”, the partial
fraction decomposition must include the following sum of n fractions.

Bx + C, . B.x + C, . N Bx+ C,
ax* + bx + ¢ (ax* + bx + c)? (ax* + bx + ¢)"




GUIDELINES FOR SOLVING THE BASIC EQUATION

Linear Factors
1. Substitute the roots of the distinct linear factors in the basic equation.

2. For repeated linear factors, use the coefficients determined in the first
cuideline to rewrite the basic equation. Then substitute other convenient
values of x and solve for the remaining coefficients.

(Quadratic Factors

. Expand the basic equation.

. Collect terms according to powers of x.

L o
-

Equate the coefficients of like powers to obtain a system of linear equations
involving A, B, C, and so on.

4. Solve the system of linear equations.
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B FINDING THE FORM OF A PARTIAL FRACTION DECOMPOSITION

The first step in finding the form of the partial fraction decomposition of a proper rational
function P(x)/Q(x) is to factor Q(x) completely into linear and irreducible quadratic

factors, and then collect all repeated factors so that (J(x) is expressed as a product of
distinct factors of the form

(ax +b)™ and (ax®+ bx +c)™

From these factors we can determine the form of the partial fraction decomposition using
two rules that we will now discuss.
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B LINEAR FACTORS
If all of the factors of Q(x) are linear, then the partial fraction decomposition of P(x)/Q(x)

can be determined by using the following rule:

LINEAR FACTOR RULE For each factor of the form (ax 4 &)™, the partial fraction
decomposition contains the following sum of m partial fractions:

AI Al Am
+ S
ax +b (ax 4 b)? (ax + b)™

where Ay, A>, ..., A, are constants to be determined. In the case where m = 1, only
the first term in the sum appears.



dx
24+ x—2

Example 1 Evaluate f
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Solution. The integrand is a proper rational function that can be written as

| 1
x3+x—2= (x — 1)x 4+ 2)

The factors x — 1 and x 4+ 2 are both linear and appear to the first power, so each con-

tributes one term to the partial fraction decomposition by the linear factor rule. Thus, the
decomposition has the form

1 A N B
x—1D(x+2) x—1 x+2

(3)

where A and B are constants to be determined. Multiplying this expression through by
(x — 1)(x + 2) vields
l=Ax+2)+Bx—-1) (6)
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Setting x = 1 makes the second term in (6) drop out and yields | =3A or A = %; and

setting x = —2 makes the first term in (6) drop out and vields 1 = —3B or B = —%. Sub-
stituting these values in (5) yields the partial fraction decomposition
1 1 _1
3, 3

x—D(x+2) x—1 " x+2

The integration can now be completed as follows:

[ dx 1f dx lf.ﬁ
J x=—D(x+2) 3) x—-1 3J) x+2

1 1 1
=§ln|r—]|—§ln|:{—|—2|-l—f=§

x —1
x+2

In

+C 4



» Example 2 Evaluate f dx.
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i o]
v ¢

Solution. The integrand can be rewritten as
2x +4 2x +4

3 —2x2 x2x—2)

Although x* is a quadratic factor, it is net irreducible since x> = xx. Thus, by the linear
factor rule, x? introduces two terms (since m = 2) of the form

A B
— _|_ —
X  x-

and the factor x — 2 introduces one term (since m = 1) of the form
C
x—2

so the partial fraction decomposition is
2x +4 A B C

2(x—2) «x +x3 +x—2
Multiplying by x*(x — 2) yields
2x +4 = Ax(x —2) + B(x — 2) + Cx’ (8)
which, after multiplying out and collecting like powers of x, becomes

2x+4=(A+C)x*+(—-2A+ B)x — 2B (9)

(7)
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Setting x = 0 in (8) makes the first and third terms drop out and yields B = —2, and setting
x = 2 in(8) makes the first and second terms drop out and yields C = 2 (verify). However,

there 1s no substitution in (8) that produces A directly, so we look to Equation (9) to find
this value. This can be done by equating the coefficients of x* on the two sides to obtain

A4+C=0 or A=-(C=-2
Substituting the values A = -2, B = -2, and C =2 in (7) yields the partial fraction

decomposition Iy + 4 I, T p)
}:3{}:—2}: X T x? +}:—2
Thus,

2x + 4 d.
f X ,=—2[——2 +zf '
x=(x —2) x—2

=—2|n|1’|+ +2]n|r—2|—|—{f—2|n

x—2

X

2
+—+C =
X
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Example 2 Evaluate f _‘_EI_-Z:: dx. A- -2 B<-72
L- C <
_ X9
- = ._A_ r % y L T )
X(=7) X X X2 TS TS %-
ra
-2
KZ(K?) L Xt __(ﬁ t e + E \ (X &K )) _ k-2 7 “_'_L_}c}-,{
3 AN G
L
: 34 C
LXAq = A X(%-2)TF B (x~-12) "’L\‘ﬂ’) @ - -2 \M‘Hf-zikll"“m A
T '
. . o
2ged = Ax-2ax 4 Bx¥-28 4 Cx _ :1 v .
1%k~ (A+) e @ardr -28 3B = 2tn| ‘?‘Lﬁ
. ____ -

(-

N
x=0O  2Wiq= A&) ¥ Bo-N ¥ UO

P =0

9 = -91B
1 Q)"——?- A-.—..-'(_,
____,_,_.-"'
) Y =17 ' 2.(1)_[_4-:(5((_&“} + 'G(.[’\' + Cﬂ - -2
+EBEc—oRD -
¢ =4acC L= 2

— = =




EX3

f iax
Y —ix—3a
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B QUADRATIC FACTORS

If some of the factors of Q(x) are irreducible quadratics, then the contribution of those
factors to the partial fraction decomposition of P(x)/(Q(x) can be determined from the
following rule:

QUADRATIC FACTOR RULE For each factor of the form (ax? + bx + ¢)™, the partial
fraction decomposition contains the following sum of m partial fractions:

A1x + By " Axx + B n N Anx + By,
ax?+bx+c  (axi+bx+c)?2 " (ax2+bx +o)m

where Ay, A2, .... A,. By, B>, .... B, are constants to be determined. In the case
where m = 1, only the first term in the sum appears.
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Solution. The denominator in the integrand can be factored by grouping:
=+ 3 —1=x"Cx =D+ Bx—1)=CBx— D"+ 1)

By the linear factor rule, the factor 3x — 1 introduces one term, namely,

A
3x — 1
and by the quadratic factor rule, the factor x2 + 1 introduces one term, namely,
Bx+C
x4+ 1
Thus, the partial fraction decomposition is
x24x—2 A Bx+C

Gr— D2+ 3r—11 2+1

Multiplying by (3x — 1)(x* + 1) yields
X Hx—2=A*+ D+ Bx+O)3x—1)

(10)

(11)
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We could find A by substituting x = % to make the last term drop out, and then find the rest
of the constants by equating corresponding coefficients. However, in this case it is just as
easy to find all of the constants by equating coefficients and solving the resulting system.
For this purpose we multiply out the right side of (11) and collect like terms:

4 x—2=(A+3Bx*+(—=B+3C)x+(A-0C)

Equating corresponding coefficients gives

A+ 3B = 1
— B+3C= 1
A — C=-2

To solve this system, subtract the third equation from the first to eliminate A. Then use the
resulting equation together with the second equation to solve for B and C. Finally, determine
A from the first or third equation. This yields (verify)

7 4
A=—-—, B=-, C
5 5

3
3
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A+ =1 O Q

At < 2D pri24c —
]

—24C +3p =\
2w 4 ¢ =3 O

- 3) =
G) -p+3c =1 ® e+3(3)
- 65 4 -
T
Iy ¢ = 3
-3/ Yac - 3 g -4
O juve= € C*-(%n“"? C'? S

Ll = N - N o
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Thus, (10) becomes
x24x-—2 —: %1 + %

and

/

Gx—D2+1) 3x—1  x241

x2+x =2 . ?[ dx +4[ X i E'sf
Gr—D2+ D T 535075 ) 2y 1TSS

7

?1|1 1 “I{’+I'+31 -
= —— 1IN |2X — -— — 1Lx — Lan
15 S '3

dx
i+
ly 4 C -
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3xt 4+ 4xi 4+ 16x2 +20x 19
(x + 2)(x% + 3)?

4 x—2=(A+3Bx*+(—=B+3C)x+(A-0C)

dx.

Example 4 Eva]uatﬂf

Equating corresponding coefficients gives

A+ 3B = 1
— B+3C= 1
A — C=-2

To solve this system, subtract the third equation from the first to eliminate A. Then use the
resulting equation together with the second equation to solve for B and C. Finally, determine
A from the first or third equation. This yields (verify)

7 4
A=—-—, B=-, C
5 5

3
3
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Solution. Observe that the integrand is a proper rational function since the numerator
has degree 4 and the denominator has degree 5. Thus, the method of partial fractions is
applicable. By the linear factor rule, the factor x 4 2 introduces the single term

A
x+2

and by the quadratic factor rule, the factor (x> 4 3)? introduces two terms (since m = 2):

BA:+C+ Dx + E
x2 43 (x2 4+ 3)2

Thus, the partial fraction decomposition of the integrand is

3xt t4xd 162+ 20+ 9 A Bx+C Dx+E
9 3 — + 3 + 7 7 (12)
(x + 2)(x=+ 3)° x+2 x-+3 (x= + 3)°

Multiplying by (x + 2)(x* + 3)? yields

3xt 4 + 1622+ 206+ 9
— AT+ B+ O+ + D)+ (Dx+ E)(x+2)  (13)




INTEGRAL CALCULUS

which, after multiplying out and collecting like powers of x, becomes

3xt +4x +16x2+20x+ 9
—(A+B)x*+ 2B+ C)x* + (6A+ 3B +2C + D)x?
+(6B+3C+2D+ Ex+(9A+6C+2E) (14)

Equating corresponding coefficients in (14) yields the following system of five linear equa-
tions in five unknowns:

A+B= 3
2B+C = 4
6A+3B+2C+ D =16 (15)

6B+ 3C+2D+E =120
9GA+6C +2E =9
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in (13), which yields A = 1. Substituting this known value of A in (15) yields the simpler system

B= 2
2B+ C= 4
3B+2C+D =10 (16)

6B+3C+2D+E =20
6C+2E= 0
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This system can be solved by starting at the top and working down, first substituting B = 2

in the second equation to get C = 0, then substituting the known values of B and C in the
third equation to get D = }4 and so forth. This yields

A=1, B=2  C=0, D=4, E=10
Thus, (12) becomes

Ixt 4y L1674+ 206 49 ] n 2x N dx
(x +2)(x* +3)* S ox 42 x243 0 (x243)2

and so

dx

f Ixt 4+ 4x3+ 162+ 2049
(x +2)(x2+3)2

f dx +f 2x ) +4f X 4
— dx —dx
x 42 x: 43 (x2 + 3)2

2

x243

—In|x + 2| + In(x* + 3) — +C «
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