
CALCULUS 2

LESSON 9

PREPARED  BY ENGR. JOHN R. REJANO,ECE

INTEGRATION TECHNIQUES

 Integration by parts



OBJECTIVES

•  to evaluate integrals using integration by parts

•  integrate functions using repeated integration by 
parts

• Integrate functions using tabular form
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Integration by Parts: 

It is derived from the differentials of the product of two factors. 
If u and v are both differentiable functions of x, then

The most useful among the techniques of integration is the 

integration by parts.

d(uv) = udv + vdu
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d(uv) = udv + vdu

By transposition,

udv = d(uv) – vdu

Integrating both sides of the equation, we have

 −= vduuvudv
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The integral            is expressed in  terms of another 

 
 integral              which must be simpler than the given integral,

and is easier to evaluate.

 udv

 vdu

Thus, given an integrand, a factor may be set as u, which is differentiable, and 
the other part as dv where its integral  must exist. The process can be used 
repeatedly.
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The technique is used in integrating odd powers of :

•odd powers secant, cosecant, hyperbolic secant and  hyperbolic cosecant 
like , 

•inverses of trigonometric and hyperbolic functions like,

 xdx4sec3

 dxxhcscx 25


− xdx2sin 1


− xdx3coshx 1

• products of transcendental /algebraic functions like

 xdx4sinx2

 xdxcose x2
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The second step is to compute du from u and

v from dv. This yields
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GUIDELINES FOR INTEGRATION BY PARTS
• The main goal in integration by parts is to choose u and dv to obtain a new integral that 

is easier to evaluate than the original. 

• In general, there are no hard and fast rules for doing this; it is mainly a matter of 

experience that comes from lots of practice. 

• A strategy that often works is to choose u and dv so that u becomes “simpler” when 

differentiated, while leaving a dv that can be readily integrated to obtain v.

There is another useful strategy for choosing u and dv that can be applied when the

Tintegrand is a product of two functions from different categories in the list

Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential
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REPEATED INTEGRATION BY PARTS
It is sometimes necessary to use integration by parts more than once in the same problem.
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A TABULAR METHOD FOR REPEATED INTEGRATION BY PARTS
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Ex 3



INTEGRAL CALCULUS



INTEGRAL CALCULUS



INTEGRAL CALCULUS



INTEGRAL CALCULUS



INTEGRAL CALCULUS



INTEGRAL CALCULUS



INTEGRAL CALCULUS



INTEGRAL CALCULUS



INTEGRAL CALCULUS





INTEGRAL CALCULUS



INTEGRAL CALCULUS
proof
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The transformation of the trigonometric functions are divided into 
two major parts, they are the following:

Part 1:  Powers of Sine and Cosine 

Part 2:  Powers of Tangent and Secant and  
             Powers of Cotangent and Cosecant

TRANSFORMATIONS of TRIGONOMETRIC FUNCTIONS
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Part 1:  Powers of Sine and Cosine
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