CALCULUS 2

ANTIDERIVATIVES (INTEGRAL)

OBJECTIVES

At the end of the lesson the students are expected to:

- identify an integrand that can be integrated using simple substitution;
- perform integration using the generalized power formula;
- relate integration by power formula to the generalized integration formula;
- and consider and use the "introduction of neutralizing/correction factor" as an alternative technique of integration.

INTEGRATION BY SUBSTITUTION

• A technique called *substitution*, that can often be used to transform complicated integration problems into simpler ones.

*u***-SUBSTITUTION**

The method of substitution can be motivated by examining the chain rule from the viewpoint of antidifferentiation. For this purpose, suppose that F is an antiderivative of f and that g is a differentiable function. The chain rule implies that the derivative of F(g(x)) can be expressed a $\frac{d}{dx} \big[F(g(x)) \big] = F'(g(x))g'(x) \text{ which we can write in integral form as} \int F'(g(x))g'(x)dx = F(g(x)) + C$

or since F is an antiderivative of f,

$$\int f(g(x))g'(x) dx = F(g(x)) + C \tag{2}$$

For our purposes it will be useful to let u = g(x) and to write du/dx = g'(x) in the differential form du = g'(x) dx. With this notation (2) can be expressed as

$$\int f(u) \, du = F(u) + C \tag{3}$$

The process of evaluating an integral of form (2) by converting it into form (3) with the substitution u = g(x) and du = g'(x) dx

is called the *method of u-substitution*.

The generalized power formula therefore is:

$$\int [f(u)]^n d[f(u)] = \frac{[f(u)]^{n+1}}{n+1} + C; \qquad n \neq -1$$

Guidelines for u-Substitution

Step 1. Look for some composition f(g(x)) within the integrand for which the substitution u = g(x), du = g'(x) dx

produces an integral that is expressed entirely in terms of u and its differential du. This may or may not be possible.

- Step 2. If you are successful in Step 1, then try to evaluate the resulting integral in terms of u. Again, this may or may not be possible.
- **Step 3.** If you are successful in Step 2, then replace u by g(x) to express your final answer in terms of x.

Example 1 Evaluate $\int (x^2 + 1)^{50} \cdot 2x \, dx$.

Solution. If we let $u = x^2 + 1$, then du/dx = 2x, which implies that du = 2x dx. Thus, the given integral can be written as

$$\int (x^2+1)^{50} \cdot 2x \, dx = \int u^{50} \, du = \frac{u^{51}}{51} + C = \frac{(x^2+1)^{51}}{51} + C$$

2. Evaluate
$$\int \frac{dx}{\left(\frac{1}{3}x - 8\right)^5}$$

Solution:

Solution:

$$u = \frac{1}{3}x - 8$$
 = $\int \frac{3 du}{u^5}$:
 $du = \frac{1}{3} dx \text{ or } dx = 3 du$ = $\int \frac{3 du}{u^5}$:

$$= \int_{1}^{\infty} \frac{3 du}{u^5}$$

$$=3\int u^{-5}\,du$$

$$= -\frac{3}{4}u^{-4} + C = -\frac{3}{4}\left(\frac{1}{3}x - 8\right)^{-4} + C$$

3. Evaluate
$$\int x\sqrt{1-x}\,dx$$
.

3. Evaluate $\int x\sqrt{1-x}\,dx$.

Solution:

Let
$$u = 1 - x$$
; also $x = 1 - u$
 $du = - dx$

$$Or dx = - du$$

Substitution yields

$$= \int (1 - u)(\sqrt{u}) - du$$

$$= -\int (1 - u)(u^{\frac{1}{2}}) du$$

$$= -\int (u^{\frac{1}{2}} - u^{\frac{3}{2}}) du$$

$$= -\frac{2}{3}u^{\frac{3}{2}} + \frac{2}{5}u^{\frac{5}{2}} + C$$

$$= -\frac{2}{3}(1-x)^{\frac{3}{2}} + \frac{2}{5}(1-x)^{\frac{5}{2}} + \mathbf{C}$$

OBJECTIVES

At the end of the lesson the students are expected to:

- ◆ Define the natural logarithmic function;
- Illustrate solutions on problem yielding to natural logarithmic function;
- Derive particular formulas involving integrals relative to natural logarithmic function; and
- evaluate problems involving natural logarithmic functions.

$$Recall: d(lnu) = \frac{du}{u}$$

Evaluate the integral of each side

$$\int \frac{du}{u} = \int d(\ln u)$$

OR

$$\int \frac{du}{u} = \ln|u| + C$$

EXAMPLE:

$$1. \int \frac{3}{2x-7} \ dx$$

$$u = 2x - 7$$

$$du = 2 dx$$

$$dx = du/2$$

$$=\int \frac{3}{u} \left(\frac{du}{2}\right)$$

$$=\frac{3}{2}\int \frac{du}{u}$$

$$=\frac{3}{2}\ln|u|+C$$

$$=\frac{3}{2}\ln|2x-7|+C$$

\int_{a}^{b}

INTEGRAL CALCULUS

2.
$$\int \frac{4x+2}{x^2+x+5} dx$$
$$= \int \frac{4x+2}{u} \left(\frac{du}{2x+1}\right)$$

$$u = x^{2} + x + 5$$
 $du = (2x + 1) dx$
 $dx = \frac{du}{2x+1}$

$$= \int \frac{\mathrm{d}u}{\mathrm{u}} \left(\frac{4x+2}{2x+1} \right)$$

$$= \int \frac{\mathrm{du}}{\mathrm{u}} \left(\frac{2(2x+1)}{2x+1} \right)$$

$$=2\int \frac{du}{u}$$

$$= 2 \ln |u| + C$$

$$= 2 \ln |x^2 + x + 5| + C$$

\int_{a}^{b}

INTEGRAL CALCULUS

$$\int \frac{3x}{1+9x^2} dx$$

$$u = 1 + 9x^{2} \quad du = 18x dx$$
$$dx = \frac{du}{18x}$$

$$= \int \frac{3x}{u} \left(\frac{du}{18x} \right)$$

$$= \frac{3}{18} \int \frac{\mathrm{du}}{\mathrm{u}}$$

$$=\frac{1}{6}\ln|u| + C$$

$$=\frac{1}{6}\ln|1+9x^2|+C$$

Practice sets

Generalized power rule-u substitution

$$1. \int (4x-3)^9 dx$$

$$2. \int t\sqrt{7t^2+12}dt$$

3.
$$\int \frac{6}{(1-2x)^3} dx$$

4.
$$\int \frac{x^3}{(5x^4+2)^3} dx$$

$$\int 4\sqrt{5+9t} + 12(5+9t)^7 dt$$
.

logarithm

6.
$$\int \frac{t+1}{t} dt$$

$$7. \int \frac{3x^4 + 12x^3 + 6}{x^5 + 5x^4 + 10x + 12} dx$$

$$8 \int \frac{x}{a^2} \frac{dx}{+x^2}.$$

$$9 \int \frac{(1-2x)^2}{x} dx$$

$$\int \frac{x^2-x}{x+1} dx.$$