LIMITS AT INFINITY

PRESENTED BY ENGR. JOHN R. REJANO,ECE

OBJECTIVES

◆ Discus infinity ◆ Discus limits approaching infinity

INFINITY rules

 $\infty + a = \infty$ where $a \neq -\infty$ $\infty + \infty = \infty$

subtraction

addition

 $-\infty - a = -\infty$ where $a \neq -\infty$ $-\infty - \infty = -\infty$ $\infty - \infty$ = Indeterminate form

multiplication

 $(a) (\infty) = \infty$ if $a > 0$ $(a) (\infty) = -\infty$ if $a < 0$

 $(\infty) (\infty) = \infty$ $(-\infty) (-\infty) = \infty$ $(-\infty) (\infty) = -\infty$

division

$$
\frac{\infty}{a} = \infty \qquad \text{if } a > 0, a \neq \infty \qquad \frac{\infty}{a} = -\infty \qquad \text{if } a < 0, a \neq -\infty
$$

$$
\frac{-\infty}{a} = -\infty \qquad \text{if } a > 0, a \neq \infty \qquad \frac{-\infty}{a} = \infty \qquad \text{if } a < 0, a \neq -\infty
$$

division

Division of a number by infinity is somewhat intuitive, but there are a couple of subtleties that you need to be aware of. When we talk about division by infinity we are really talking about a limiting process in which the denominator is going towards infinity. So, a number that isn't too large divided an increasingly large number is an increasingly small number. In other words, in the limit we have,

division

Division of a number by infinity is somewhat intuitive, but there are a couple of subtleties that you need to be aware of. When we talk about division by infinity we are really talking about a limiting process in which the denominator is going towards infinity. So, a number that isn't too large divided an increasingly large number is an increasingly small number. In other words, in the limit we have,

Infinity to the Power Zero

Infinity to the power zero is an indeterminate form:

 ∞^0 = Indeterminate form

Zero to the Power of a Number

If the power of zero is greater than zero, then the result is zero:

 $0^k=0$, where k is greater than zero

If the power of zero is greater than infinity, then the result is infinity:

 $0^k=\infty$, where k is less than zero

If the number is greater than one, then the result is infinity:

 $k^{\infty} = \infty$, where k is greater than 1

If the number is greater than zero but less than one, then the result is zero:

$$
k^{\infty} = 0, 0 < k < 1
$$

Infinity to the power infinity is equal to infinity:

One to the power infinity results in an indeterminate form:

LIMITS

 1^{∞} = Indeterminate form

 $0^{\infty} = 0$

 $\infty^{\infty} = \infty$

LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES

If the values of a variable x increase without bound, then we write $x \rightarrow +\infty$, and if the values of x decrease without bound, then we write $x \rightarrow -\infty$. The behavior of a function $f(x)$ as x increases without bound or decreases without bound is sometimes called the *end behavior* of the function. For example,

$$
\lim_{x \to -\infty} \frac{1}{x} = 0 \quad \text{and} \quad \lim_{x \to +\infty} \frac{1}{x} = 0 \tag{1-2}
$$

are illustrated numerically in Table 1.3.1 and geometrically in Figure 1.3.1.

Table 1.3.1

1.3.1 LIMITS AT INFINITY (AN INFORMAL VIEW) If the values of $f(x)$ eventually get as close as we like to a number L as x increases without bound, then we write

$$
\lim_{x \to +\infty} f(x) = L \quad \text{or} \quad f(x) \to L \text{ as } x \to +\infty \tag{3}
$$

Similarly, if the values of $f(x)$ eventually get as close as we like to a number L as x decreases without bound, then we write

$$
\lim_{x \to -\infty} f(x) = L \quad \text{or} \quad f(x) \to L \text{ as } x \to -\infty \tag{4}
$$

Figure 1.3.2 illustrates the end behavior of a function f when

$$
\lim_{x \to +\infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L
$$

In the first case the graph of f eventually comes as close as we like to the line $y = L$ as x increases without bound, and in the second case it eventually comes as close as we like to the line $y = L$ as x decreases without bound. If either limit holds, we call the line $y = L$ a *horizontal* asymptote for the graph of f .

LIMITS OF x^n AS $x \rightarrow \pm \infty$

Figure 1.3.5 illustrates the end behavior of the polynomials x^n for $n = 1, 2, 3$, and 4. These are special cases of the following general results:

 \triangle Figure 1.3.5

Example

LIMITS OF POLYNOMIALS AS $x \rightarrow \pm \infty$

There is a useful principle about polynomials which, expressed informally, states:

The end behavior of a polynomial matches the end behavior of its highest degree term.

More precisely, if $c_n \neq 0$, then

$$
\lim_{x \to -\infty} (c_0 + c_1 x + \dots + c_n x^n) = \lim_{x \to -\infty} c_n x^n
$$

$$
\lim_{x \to +\infty} (c_0 + c_1 x + \dots + c_n x^n) = \lim_{x \to +\infty} c_n x^n
$$

Example

$$
\lim_{x \to -\infty} (7x^5 - 4x^3 + 2x - 9) = \lim_{x \to -\infty} 7x^5 = -\infty
$$

$$
\lim_{x \to -\infty} (-4x^8 + 17x^3 - 5x + 1) = \lim_{x \to -\infty} -4x^8 = -\infty
$$

LIMITS OF RATIONAL FUNCTIONS AS $x \rightarrow \pm \infty$

One technique for determining the end behavior of a rational function is to divide each term in the numerator and denominator by the highest power of x that occurs in the denominator, after which the limiting behavior can be determined using results we have already established. Here are some examples.

Example

Find $\lim_{x \to +\infty} \frac{3x+5}{6x-8}$.

Other examples

(a)
$$
\lim_{x \to \infty} \frac{2x + 3}{4x - 5}
$$
 (b) $\lim_{x \to \infty} \frac{2x^2 + 1}{6 + x - 3x^2}$ (c) $\lim_{x \to \infty} \frac{x}{x^2 + 5}$

REFERENCE

- 1. CALCULUS by H. Anton, et al 10th edition
- 2. Schaum's outline series CALCULUS 6th edition by Ayres/ Mendelson