LIMITS AT INFINITY
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OBJECTIVES g

¢ Discus Infinity
¢ Discus limits approaching infinity
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INFINITY rules

o0+ a

oo wherea # —o¢

addition 50 4 00 — 00
subtraction ~ °° @ =00 Wherea# —oc
—00 — 00 = —0C
oC — o = Indeterminate form
mu|'[ID|IC8.'[IOn (a)(o0) =00 ifa=0 (a)(00) =—00 ifa<0
(00) (00) = 00 (—00) (—00) =00 (—00) (00) = —00
division %:m ifa>0,a# 00 ?z—m ifa < 0,04 -0
%:—m ifa>0,a+00 ?:m ifa<0,0a#-00
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division
Division of a number by infinity is somewhat intuitive, but there
are a couple of subtleties that you need to be aware of. When
we talk about division by infinity we are really talking about a
limiting process in which the denominator is going towards
infinity. So, a number that isn’t too large divided an increasingly

large number Is an increasingly small number. In other words, In
the limit we have,

E—
0Q —00
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Infinity to the Power Zero

INnfinity to the power zero is an indeterminate form:

DC'D = Indeterminate form

Zero to the Power of a Number

If the power of zero is greater than zero, then the result is zero:

0% = 0, where k is greater than zero

If the power of zero is greater than infinity, then the result is infinity:

l:]"i": — o0, where k is less than zero

If the number is greater than one, then the result is infinity:
k= = oc, where k is greater than 1
If the number is greater than zero but less than one, then the result is zero:

E=00< k<1



LIMITS

Zero to the power infinity is equal to zero:

0°° = 0
Infinity to the power infinity is equal to infinity:

o0 = oo

One to the power infinity results in an indeterminate form:

17 = Indeterminate form



[ LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES

LIMITS

If the values of a variable x increase without bound, then we write x — 4+, and if the
values of x decrease without bound, then we write x — —2. The behavior of a function
f(x) as x increases without bound or decreases without bound is sometimes called the end
behavior of the function. For example,

Iim — =0 and
X——ax X

1

lim — =0
r——+4=o

(1-2)

are 1llustrated numerically in Table 1.3.1 and geometrically in Figure 1.3.1.

Table 1.3.1
VALUES CONCLUSION
X -1 10 -100 —-1000 —-10,000 As x — —oo the value of 1/x
l/x | -1 -0.1 -0.01 -0.001 -0.0001 increases toward zero.
X 1 10 100 1000 10,000 As x — 4oo the value of 1/x
1/x 1 0.1 001 0001 0.0001 decreases toward zero.
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[.3.1 LIMITS AT INFINITY (AN INFORMAL VIEW) If the values of f(x) eventually
get as close as we like to a number L as x increases without bound, then we write

lim f(x)=L or flx)—=Lasx—+4+x (3)

X — ot
Similarly, if the values of f(x) eventually get as close as we like to a number L as x
decreases without bound, then we write

lim f(x)=L or f(x)—Lasx— —» (4)

X —% —ot

Figure 1.3.2 illustrates the end behavior of a function f when
“TI} fix)=L or lim fix)=L
X —F 10 X —# —aod

In the first case the graph of f eventually comes as close as we like to the line y = L as x
increases without bound, and in the second case it eventually comes as close as we like to
the line v = L as x decreases without bound. If either limit holds, we call the line v = L
a horizontal asymptote for the graph of f.
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Y=

lim flx)=1L

X — =i

AV

y=1L Horizontal asymptote

Y=

lim fix)=1L

N——iw
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B LIMITS OF x" AS X — £=

Figure 1.3.5 illustrates the end behavior of the polynomials x" forn = 1, 2, 3, and 4. These
are special cases of the following general results:

—», n=1,3,5,...
lim x"=4®=, n=1,2.3,... lim x" = i 1516
X— 4o X——x 4w, n=2,4,6,... { )
AY ALY
|
8+ g | F=%
L L L i L1 L1 i
-4 -4 -4 -4 4
-8B -3 B -8r
lim x= 4eo lim x% = 4eo lim x° = 400 lim x! =400
X—+oa X —3 4o X—+oa X— o
lim x= —oo lim x° = +oo lim x* = —co lim x' =400
X —p—i3 X——oo X—r—oa X —¢—r

A Figure 1.3.5
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Example

lim 2x° = 4o, lim 2x° = —ae
X — o8 X — —ab

lim —7x° = —z, lim —7x% = —x
X — oo I — —ob

B LIMITS OF POLYNOMIALS AS X — £
There is a useful principle about polynomials which, expressed informally, states:

The end behavior of a polynomial matches the end behavior of its highest degree term.

More precisely, if ¢, # 0, then

lim (co+ecix+---+ r:,,x") = lim cux"
I — —ao X — —oo
lim (cop+ecix+---+cux") = lim ¢,x”

X — 4= X — 4o
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Example |

im (7x° —4x' +2x —9) = lim 7x° = —x=

X——x X —» —nol

lim {—4}:& L 17x —5x 4+ 1) = lim _4xY = -

X — —aoo X —F —oo
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[l LIMITS OF RATIONAL FUNCTIONS AS X — +=
One technique for determining the end behavior of a rational function is to divide each term
in the numerator and denominator by the highest power of x that occurs in the denomi-
nator, after which the limiting behavior can be determined using results we have already

established. Here are some examples.

Example

Find i .
xS = 6x — 8




Limits

2 —3_ 1
hm 2x° .

o0 Ox? + v — 3x
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Other examples

2x +3 U+ X

(a) lim oS (6) lim (¢) lim ——
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